cERLにおける バンチ圧縮・復元シミュレーション

ビームダイナミックス打ち合せ 2014年10月16日(水)

加速器研究施設•第7研究系 中村 典雄

日的

- 前回、コヒーレントテラヘルツ光(THz-CSR)
 発生のためにバンチ圧縮シミュレーションを
 行って、バンチ圧縮に対する第1アーク部の
 六極電磁石の要件(台数と仕様)を調べた。
- ・ 圧縮後のバンチ復元(エネルギー圧縮)のシ ミュレーションを同様に行って、第2アーク部 での六極電磁石の要件(台数と仕様)を調べ る。

コヒーレント放射光スペクトル

アーク部偏向電磁石からの放射光スペクトルの例(20MeV) 10^{15} 10¹³ photons/s/mrad/0.1%b.w. コヒーレント放射光 5 THz 7.7 pC, 130 kHz, σ_t =50 fs 10^{11} 7.7 pC, 130 kHz, σ_t =100 fs フラックス 7.7 pC, 130 kHz, σ_t =200 fs 10⁹ 10^{7} インコヒーレント 10^{5} 放射光 1000 10¹⁰ 10^{12} 10^{13} 10^{11} 10^{14} 周波数[Hz]

5THzまでのコヒーレント放射光発生には、100fs以下のバンチ長が要求される。

cERLにおけるバンチ圧縮・復元方式

主空洞のoff-crest加速・減速+アーク部での磁気的圧縮・復元

運動量差による時間差の影響

運動量差による時間差(軌道長L)

$$\Delta t = L\left(\frac{1}{v+\Delta v} - \frac{1}{v}\right) = -L\frac{\Delta v}{v^2} = -\frac{L}{v}\frac{\Delta\beta}{\beta}$$
$$\longrightarrow \quad \Delta z = v\Delta t = -\frac{L}{\gamma^2\beta}\frac{\Delta p}{p}$$

運動量差によって生じる実効的なR₅₆

$$R_{56}^{eff} = -\frac{L}{\gamma^2 \beta}$$

バンチ長を最小とする位置に依存して最適なアーク部のR₅₆が変わる。

第1アーク部オプティクス($R_{56}=0.15$)

 $\beta_x = 5.07 \text{ m}, \beta_y = 8.21 \text{ m}, \alpha_x = \alpha_y = 0, \eta_x = 0.134 \text{ m}, \eta_x' = 0 \text{ at center}, R_{56} = 0.1505 \text{ m}$ 35 β_{\times} QMIF06 30 QMIF01 QMIF03 QMIF04 β_v (m 25 QMIF02 QMIF05 20 ν ¥_⊓ $\beta_x = 5.041 \,\mathrm{m}$ Ś 15 α_{x} =-0.2038 Å 10 β_y =31.04 m α_{v} =5.945 Q 6 8 Ο 4 s (m) $\eta_{\rm x}$ 0.0 (E $\eta_{\rm v}$ SXIF01 SXIF02 SXIF03 SXIF04 η_x =0.0 m -0.5 $\underline{\mathbf{x}} \sqcup \underline{\mathbf{x}}$ <u>¥ ¬¥</u> γ'n $\eta_{x}'=0.0$ 1.0- ج ج QMIF01(6): K₁=-2.170 m⁻³ QMIF02(5): K₁=7.435 m⁻³ -1.5 QMIF03(4): K₁=-2.047 m⁻³ 8 6 Ο 4 s (m)

前回のバンチ圧縮シミュレーションと同じオプティクスを使用した。

第2アーク部オプティクス(R₅₆=-0.06)

 $\beta_x = 4.95 \text{ m}, \beta_v = 4.80 \text{ m}, \alpha_x = \alpha_v = 0, \eta_x = 0.283 \text{ m}, \eta_x' = 0 \text{ at center}, R_{56} = -0.0607 \text{ m}$

第1アーク、シケイン、運動量の差によるR₅₆を考慮して第2アークのR₅₆値を設定した。

 R_{56} vs. η_x vs. $\alpha_{x,y}$

拘束条件として、アーク中央で対称とし、アーク両端の $\beta_{x_i} \beta_y$ を通常モードと同じ値とした。 R₅₆>0(R₅₆<0)ではアーク両端の $\alpha_x(\alpha_y)$ を変えず、 $\alpha_y(\alpha_x)$ だけを変えた。

バンチ圧縮・復元オプティクス(SX2&4,1ps)

入射エネルギー: 2.9 MeV, 初期値: β_x =0.948 m, α_x =-0.477, β_y =0.760 m, α_y =-0.683 加速電圧: 8.549MV/cavity,加速/減速位相:約25°/205°(バンチ圧縮・復元で最適化)

バンチ圧縮·復元(SX2&4 ON, 1ps)

(1) 第2アーク入口でバンチ長を最小にするように、第1アークの六極電磁石強度とRF加速位相を最適化。 (2) 減速空洞出口で運動量幅を最小にするように、第2アークの六極電磁石強度とRF減速位相を最適化。

ビームサイズ(SX2&4 ON, 1ps)

バンチ圧縮・復元オプティクス(SX2,1ps)

初期エネルギー: 2.9 MeV, 初期値: β_x =0.948 m, α_x =-0.477, β_y =0.760 m, α_y =-0.683 加速電圧: 8.549MV/cavity,加速/減速位相:約25°/205°(バンチ圧縮・復元で最適化)

バンチ圧縮·復元(SX2 ON,1ps)

ビームサイズ(SX2 ON,1ps)

バンチ圧縮・復元オプティクス(SX2&4,2ps)

初期エネルギー: 2.9 MeV, 初期値: β_x =0.948 m, α_x =-0.477, β_y =0.760 m, α_y =-0.683 加速電圧: 8.549MV/cavity,加速/減速位相:約25°/205°(バンチ圧縮・復元で最適化)

バンチ圧縮·復元(SX2&4 ON, 2ps)

ビームサイズ(SX2&4 ON, 2ps)

バンチ圧縮・復元オプティクス(SX2, 2ps)

初期エネルギー: 2.9 MeV, 初期値: β_x =0.948 m, α_x =-0.477, β_y =0.760 m, α_y =-0.683 加速電圧: 8.549MV/cavity,加速/減速位相:約25°/205°(バンチ圧縮・復元で最適化)

バンチ圧縮・復元(SX2 ON, 2ps)

ビームサイズ(SX2 ON,2ps)

シミュレーション結果

初期パラメータ値:Q=7.7pC, σ_{t0} =1ps, σ_{p0}/p_0 =0.001

	バンチ長	運動量幅	規格化エミッタンス	六極磁場	RF位相	T566	T166	T266
	<i>o_t</i> [fs]	<i>o_p/p</i>	ɛ _{nx} , ɛ _{ny} [mm mrad]	K ₂ [m ⁻³]	_{Ø_{RF}[deg]}	(arc)	(arc)	(arc)
	上:バンチ圧縮時			上 : SXIF	上:加速	上:第1アーク		
	下:バンチ復元時			下 : SXIR	下:減速	下:第2アーク		
SX2&4 ON	45.2	0.00384	1.16, 1.20	-52.3, -35.0	24.62	0.053	-2.85	0.08
	1195	0.00115	1.15, 1.19	-64.4, -40.8	205.95	-0.438	-3.84	-0.01
SX2 ON	50.1 1287	0.00401	1.34, 1.20 1.18, 1.28	<u>-89.8</u> -109.7	25.11 205.30	-0.048 -0.515	-12.0 -14.4	0.22 -0.22
SX2&4 ON	42.7	0.00390	1.03, 1.20	-51.3, -35.7	25.07	0.066	-2.64	0.08
Q → 0.77 pC	1242	0.00103	1.01, 1.19	-62.7, -40.8	204.84	-0.309	-3.63	-3e-3
SX2 ON Q → 0.77 pC	48.9 1252	0.00391	1.25, 1.19 1.04, 1.27	<u>-88.6</u> -109.2	25.10 204.74	0.055	-11.8 -14.3	0.21 -0.22
SX2&4 ON	45.3	0.00777 0.00114	1.34, 1.54	-52.2, -35.1	25.18	0.047	-2.83	0.08
$\sigma_{t0} \rightarrow 2ps$	2387		1.21, 1.82	-56.6, -46.3	205.13	-0.297	-2.22	-0.03
SX2 ON $\sigma_{t0} \rightarrow 2ps$	69.4 2648	0.00779	4.90, 1.56 2.42, 1.75	-89.8 -116.5	25.33 204.80	-0.041	-12.0 -15.2	0.22 0.28

上表の全ての場合に、バンチ圧縮は可能であった($K_2 < 200[m^2]$, $L_{SX}=10[cm]$)。 上表のほとんどの場合、バンチ復元は可能であった($K_2 < 200[m^2]$, $L_{SX}=10[cm]$)。 Q=7.7pC、 $\sigma_{t0}=2ps$ では分散によるビームサイズが大きくなり、エミッタンスも増加する。 六極電磁石各アーク部1台の場合は、2次の分散やエミッタンスの増加が見られた(特に $\sigma_{t0}=2ps$ の場合)。

まとめ

- R₅₆=0.15m,-0.06mの第1,2アーク部オプティクスを用いてバンチ圧縮・復元シミュレーションを試みた。今回は、バンチ長最小とする場所を第2アーク入口に設定し、加速前の初期のバンチ長と運動量幅を1ps、0.001と仮定した。
- シミュレーションの結果、六極電磁石は第1、2アーク部に1 -2台ずつでも100fs以下のバンチ圧縮とその復元が可能で あることがわかった。必要な磁場強度は長さ10cmの六極電 磁石に対してK2=200m⁻³以下であった。
- 初期のバンチ長が2psに伸びると、分散によるビームサイズ が大きくなり、エミッタンスがやや劣化する。さらに、六極電磁 石1台ずつの場合ではエミッタンスの劣化やT₁₆₆, T₂₆₆などの 2次の分散の影響が顕著になった。