25MeV にした場合の 合流部と 光のパラメータ

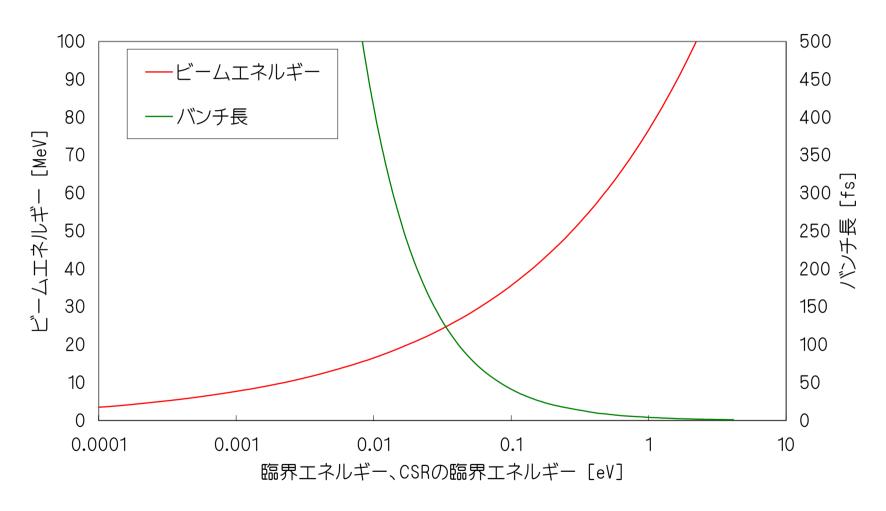
本日の話題

既存の冷凍機を使い、予算を節約するために、25MeV で立ち上げる可能性が出てきたため、25MeV の場合の合流部と光のパラメータについて、簡単に計算してみる。

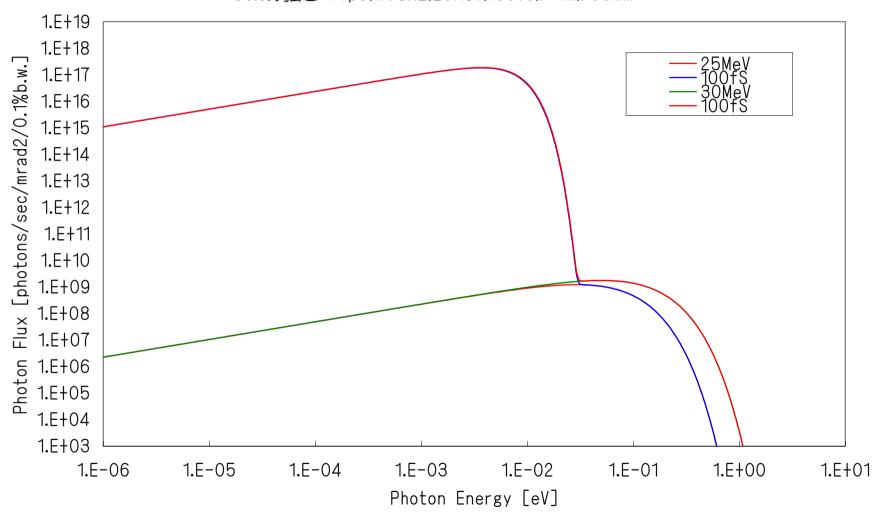
- テラヘルツ光
- ・逆コンプトン散乱光
- 合流部の軌道と軌道の分離

→例に依って例の如く、スペック計算のみ。

テラヘルツ光に関する計算


25MeV では

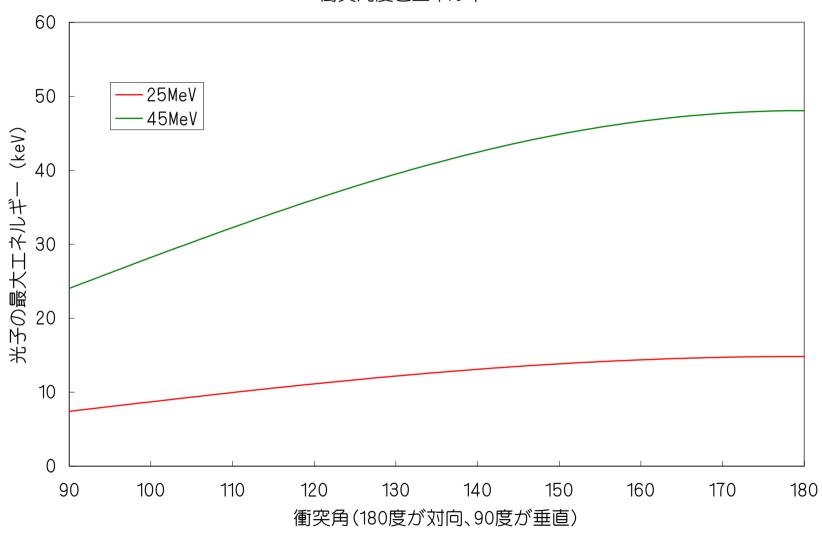
通常の放射光の臨界エネルギー : 34.67meV


CSR の臨界エネルギー(50fs): 41.36meVCSR の臨界エネルギー(100fs): 20.68meVCSR の臨界エネルギー(500fs): 4.14meVCSR の臨界エネルギー(1ps): 2.07meV

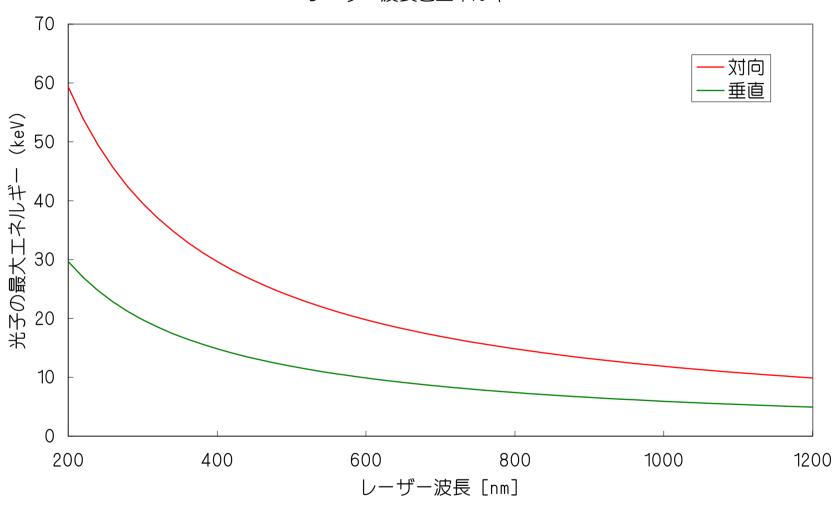
エネルギーが低いことによるロスはない。

ビームエネルギーとバンチ長

CSRの強さ 77pC,1.3GHz,25MeV,100fs,r=1m,F50mm

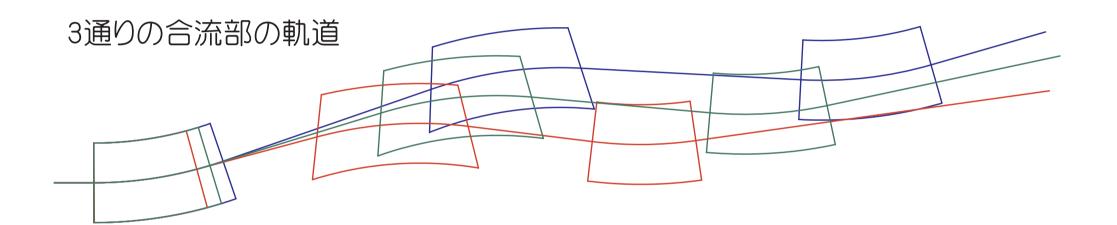


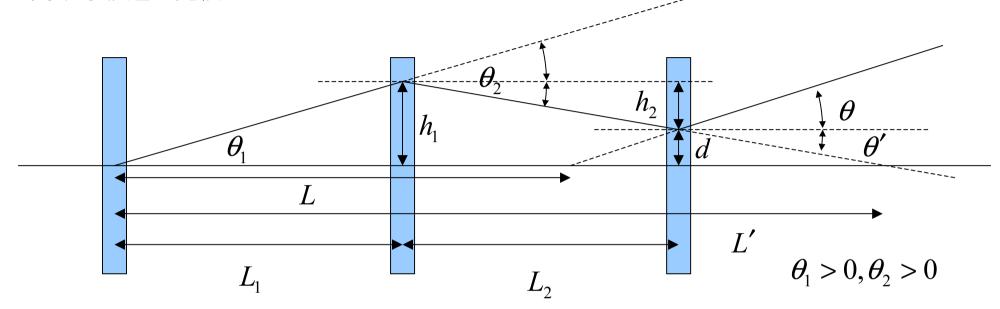
レーザーコンプトン散乱に関する計算


散乱光のエネルギー :
$$\varepsilon_{ph} = 2\gamma^2 \varepsilon_{laser} (1 - \beta \cos \alpha)$$

65MeV と 25MeV で、 $\left(\frac{25}{65}\right)^2 = 0.15$ だけ違う。散乱を垂直から対向にしても 2 倍増えるだけなので、0.3 までしか回復しない。レーザーのエネルギーを 3 倍(波長 1/3)にしてやっと 0.9。

衝突角度とエネルギー




合流部の電磁石パラメータ

- ・ 羽島さんの3つの案について、軌道を検討する。
- 周回部のエネルギーは 25MeV、入射は 5MeV か 10MeV とする。
- ・曲率半径一定、中央のBの曲げ角は22度、エッジ角は20度で固定、ドリフトを変えて 色消し条件を満たすようにする。

	曲率半径	曲げ角	エッジ角	比	長さ	ドリフト	全長
	[m]	[deg]	[deg]		[m]	[m]	[m]
BM2	1	-22	-20	-0.90909	0.38397		
BM1-1	1	15	15	1	0.26180	0.31425	1.53608
BM1-2	1	17	17	1	0.29671	0.45082	1.87902
BM1-3	1	19	19	1	0.33161	0.55434	2.15587

簡単な軌道の見積もり

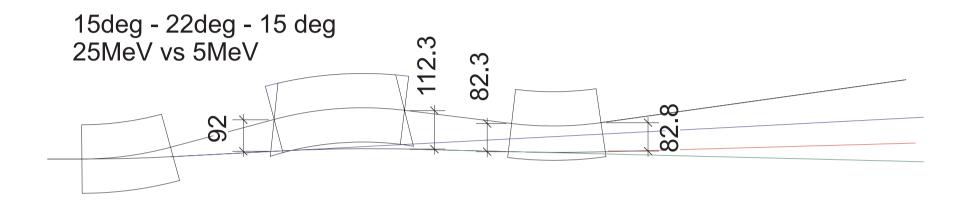
$$d = h_1 - h_2 = L_1 \tan \theta_1 - L_2 \tan(\theta_2 - \theta_1)$$

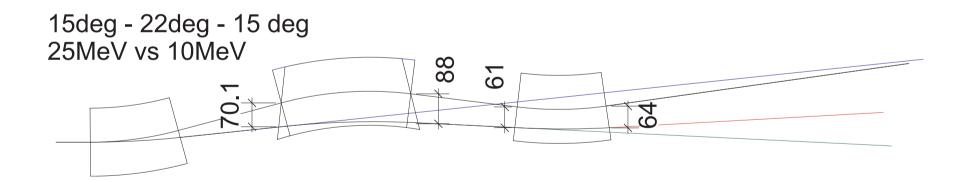
$$\theta = 2\theta_1 - \theta_2 \qquad L = L_1 + L_2 - \frac{d}{\tan \theta} \qquad L' = L_1 + L_2 + \frac{d}{\tan(\theta_2 - \theta_1)}$$

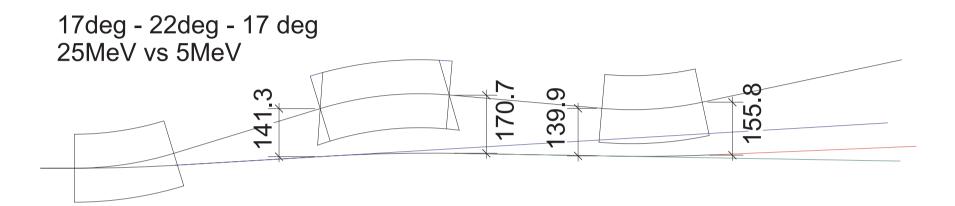
各場合について、d、 θ 、Lを求めてみる。

入射側

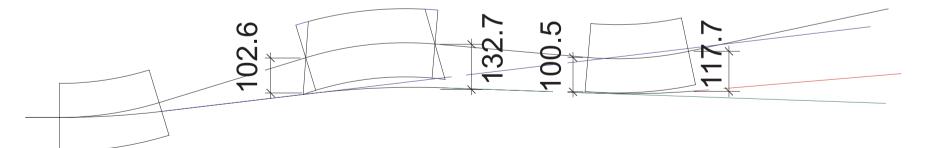
	L ₁	h ₁	h ₂	d	θ	Tanθ	L
	[m]	[m]	[m]	[m]	[度]		[m]
15度	0.63714	0. 17072	-0. 07823	0.09249	8	0. 14054	0. 61618
17度	0. 79116	0. 24188	-0.06922	0. 17266	12	0. 21256	0.77000
19度	0. 91213	0. 31407	-0.04780	0. 26627	16	0. 28675	0.89567

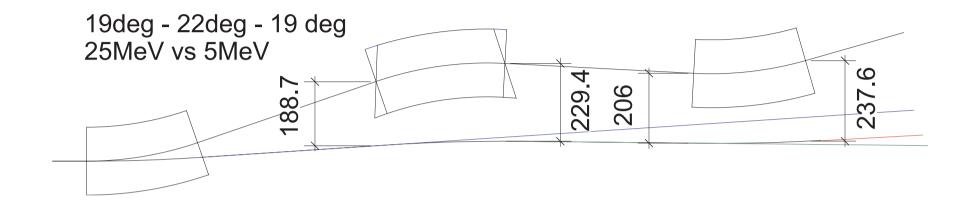

合流部長
[m]
1.61633
1.92396
2.17531

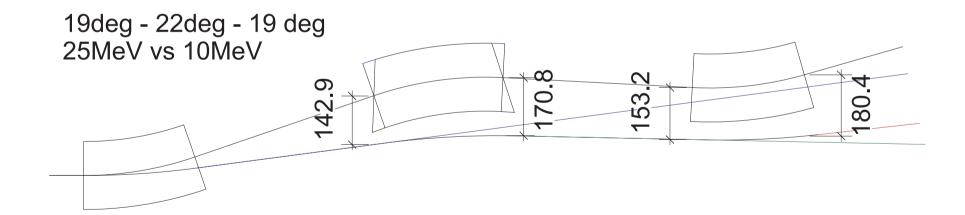

周回側 (25MeV vs 5MeV)


	L ₁	h ₁	h_2	d	θ	$Tan \theta$	L	θ'	Ľ'
	[m]	[m]	[m]	[m]	[度]		[m]	[度]	[m]
15度	0.63714	0. 03339	-0. 01557	0.01782	1.6	0.02793	0. 63632	-1	1. 41941
17度	0. 79116	0.04700	-0. 01381	0.03319	2. 4	0.04191	0.79034	-1	1. 85265
19度	0. 91213	0.06058	-0.00955	0.05103	3. 2	0.05591	0. 91150	-1	2. 23988

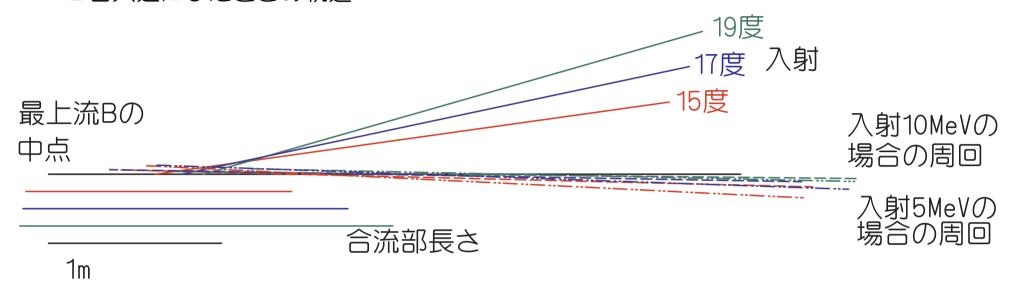
周回側 (25MeV vs 10MeV)


	L_1	h_1	h ₂	d	θ	$Tan \Theta$	L	θ'	L'
	[m]	[m]	[m]	[m]	[度]		[m]	[度]	[m]
15度	0.63714	0.06697	-0. 03116	0.03580	3. 2	0.05591	0.63386	-3	1. 56589
17度	0. 79116	0.09434	-0.02763	0.06671	4.8	0.08397	0. 78786	-2	2. 12564
19度	0. 91213	0. 12170	-0. 01911	0. 10260	6. 4	0. 11217	0. 90958	-1	2. 65985





17deg - 22deg - 17 deg 25MeV vs 10MeV



最下流B入り口のバンプ高さ

- 10MeV の場合、19 度で 10cm、17 度で 6.7cm、15 度でも 3.5cm。
- ・5MeV の場合、19 度で 5.1cm、17 度で 3.3cm、15 度で 1.8cm。
- 周回ビームは蓄積ビームの入射ビーム並みの振幅になる。バンプに対する上流側のQの影響は免れない。

2台共通にしたときの軌道

- 3台目(最下流)のBでの、入射と周回ビームの軌道差は
- 10MeV の場合、15 度では 6cm しかない。17 度で 10cm ぎりぎりくらい。19 度の場合は 15cm くらいある。
- 15 度の場合、軌道がゼロをクロスする点は、最上流 B の入り口あたりになる。

作りやすいのは……

- 19 度にして、2 台共通、5MeV と 10MeV の各場合に対して軌道を横切るあたりにステアリング。(2 台あれば中間の比の場合も対応できよう。)
- 17 度にして、軌道で 10cm の間隔で分離できるか?
- •15 度の場合は3台共通にせざるを得ない。バンプを閉じさせるために、4極の 影響を考慮してステアリングを配置する必要がある。

結論

- 25MeVにしても、バンチ長が短くできるなら、テラヘルツ光には影響なし。
- ・逆コンプトン散乱については、40keV を出すことは不可能。対向散乱にしても 10keV を超えるあたりのエネルギーが限界。
- ・合流部に関しては、周回部と合流部のエネルギー比が変わると、周回部の軌道が ゼロクロスする点が変わるため、ステアリングは少なくとも2台必要。
- ・3台全て共通にするか、2台共通にするかが問題だが、15 度では3台共通にせざるを得ない。19 度では、3台共通にすると、周回ビームの振幅が 10cm を超える。できないとは言わないが、4極などを含めてちゃんとバンプを設計しないといけなくなる。(PF や AR など、入射が直線部からはみ出るリングでは、入射ビームに対して普通にやっていることではある。)
- 合流部はどうにでもなると思うが、入射部の最後の4極がどこに来るかで磁石同士の干渉を調整する必要がある。