周長補正について

ビームダイナミクスWG 2010年11月24日(水)14:00~ 3号館7階会議室

> 加速器第7研究系 島田 美帆

必要な補正量

・ エネルギーによる周長(周回時間)の変化量

	5:30 MeV	5:35 MeV	5:65 MeV	5:125 MeV
合流部バンプ	0.93 mm	基準	-1.83 mm	-2.37 mm
取り出しバンプ	0.52 mm	基準	-1.02 mm	-1.32 mm
周回時間	3.85 mm	基準	-7.57 mm	-9.82 mm
合計	5.30 mm	基準	-10.41 mm	-13.51 mm

電子のエネルギーによって、20mmの周長補正が必要か。(レーザーコンプトンとTHz光源利用の電子エネルギーによる)

- その他、運転中の周長補正
 - 日較差 ~ 1 mm
 - 年較差 ~ 5 mm
 - その他?

補正手段

- 周波数の変調
 - レーザー繰り返し : 100 kHzの調整が可能
 - 主加速空洞 : 最大100kHzの調整が可能だが、空洞の製作精度による。
 - 入射器加速空洞 : 主加速空洞より可変範囲は広い(?)

最大でおよそ±5 mmの調整が可能と思われるが、 メカニカルな調整が必要なため、極力避けたい。

- 直線部のシケイン
 - バンチ圧縮モードではCSR wakeの影響が大きいため、周長調整は ±1mm程度に抑えたい。
- アーク部のステアリング
 - 後述

シケインでのCSR wake影響(BDWG資料より抜粋)

シケインのみで計算

電子のエネルギー: 125 MeV、バンチ電荷量: 77 pC

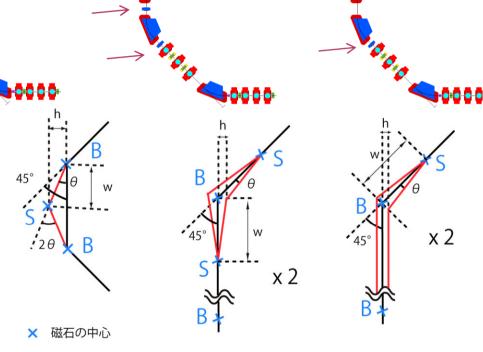
	曲げ角 [degree]	周長補正量 (L=300) [mm]	バンチ長 [fs]	規格化エミッタンス (水平)[mm mrad]	エネルギー広がり
初期値			100	1.0	1.0e-4
Case 1	10	20	140	2.8	9.7e-4
Case 2	5	5	106	1.0	8.5e-4

	曲げ角 [degree]	周長補正量 (L=300) [mm]	バンチ長 [fs]	規格化エミッタンス (水平)[mm mrad]	エネルギー広がり
初期值			50	1.0	1.0e-4
Case 3	10	20	130	4.8	1.7e-3
Case 4	5	5	63	2.3	1.6e-3

- 周回部半周:バンチ長34 fs・規格化エミッタンスおよそ4.5mm mrad.
 (白神君の修士論文より)
- 曲げ角が10°の場合、シケインのCSR wakeの影響はアーク半周と同等か。
- 65MeV, 35MeVの低いエネルギーでは、さらに影響が大きくなる。

アーク部のステアリング追加1(内側ループ)

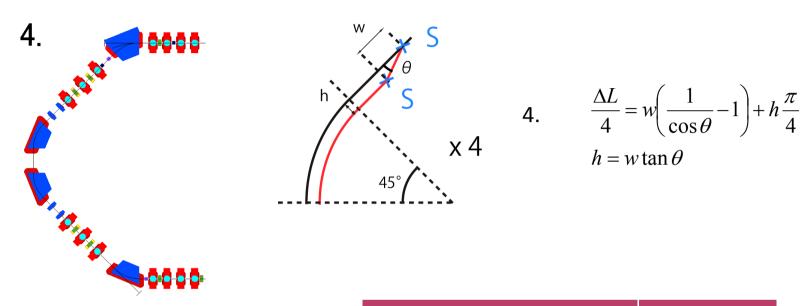
ステアリング追加


ΔLの周長補正

$$1. \qquad \frac{\Delta L}{4} = w \left(\frac{1}{\cos \theta} - 1 \right)$$

2.
$$\frac{\Delta L}{8} = w - w \frac{\sin(67.5^{\circ})}{\sin(67.5^{\circ} + \theta)}$$

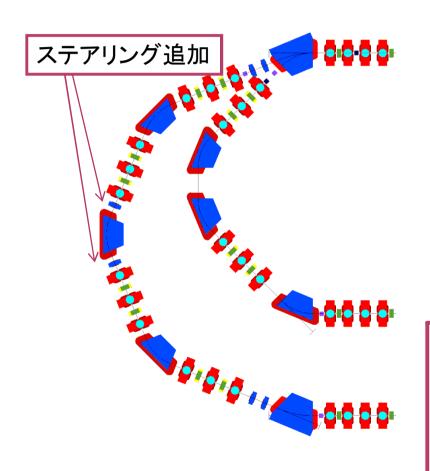
3.
$$\frac{\Delta L}{4} = w + w \frac{1}{\sqrt{2}} \tan \theta - w \frac{1}{\cos \theta}$$

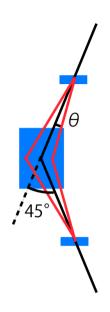

ΔL = 5mm、w=700mmの場合、

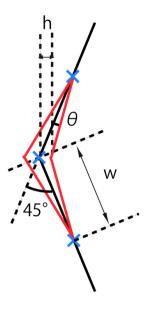
3.

	Case 1	Case 2	Case 3
ベンドの曲げ角	42°	44.75°	44.86°
ステアリングの曲げ角	6.9°	0.12°	0.14°
スナナラング曲い円	0.0		• ·
h	42 mm	1.6 mm	1.25 mm

アーク部のステアリング追加2(内側ループ)




ΔL = 5mm、w=300mmの場合、

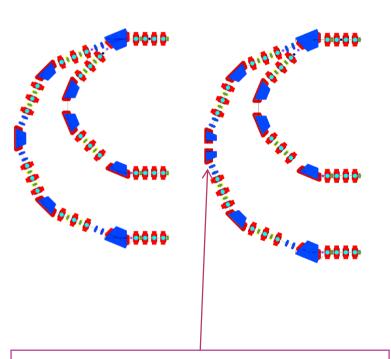

	Case 4
ベンドの曲げ角	45°
ステアリングの曲げ角	0.3°
h	1.6 mm

- ベンドの曲げ角、エッジの角度に変化がないため、オプティクスに対する 影響も小さいか?
- 1.2°の曲げ角で20 mmの補正が可能。

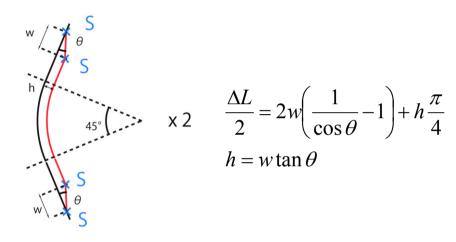
アーク部のステアリング追 加1 (外側ループ)

× 磁石の中心

ΔLの周長補正


$$\frac{\Delta L}{4} = w - w \frac{\sin(67.5^\circ)}{\sin(67.5^\circ + \theta)}$$

ΔL = 5mmの場合、


ベンドの長さ	800 mm
ベンド・ステアリング間	300 mm
W	700 mm
ステアリング曲げ角	0.25°
BEND曲げ角	44.5°
h	3.3 mm

アーク部のステアリング追加2 (外側ループ)

内側ループ Case 4とほぼ同じ。ただし、補正箇所が4カ所から2カ所に減る。

アライメントエラーの補正のために、このベンドを2つに割る案がある。

ΔL = 5mm、w=300mmの場合、

	Case 2
ベンドの曲げ角	45°
ステアリングの曲げ角	0.6°
h	3.2 mm

• 2.4°の曲げ角で20 mmの補正が可能。

まとめ・今後の方針

• 運転中の周長(周回時間)補正量 全体で25mm必要。

- 電子のエネルギー 20 mm

- 日較差•年較差 5 mm

- 全体 25mm

・ 補正方法は以下の3つがある。

- 周波数の変調 ±5 mm

直線部のシケイン ±1 mm

- アーク部のステアリング 20 mmは可能か?

- 今後の方針
 - アーク部のステアリング追加によるオプティクスの影響を調べる。