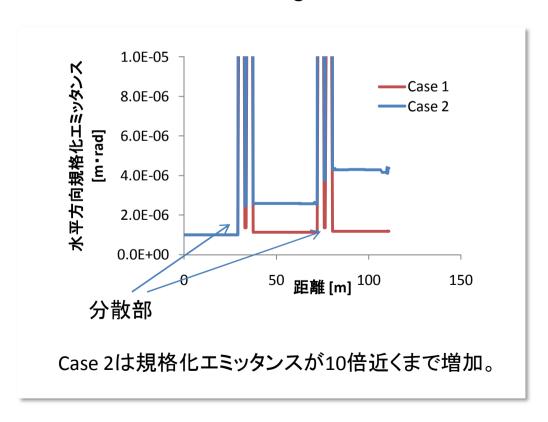
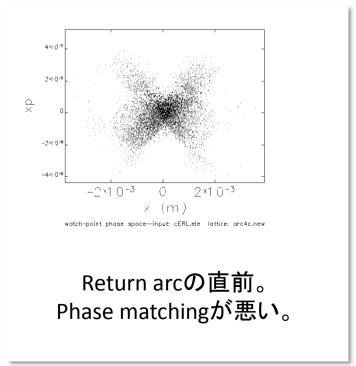
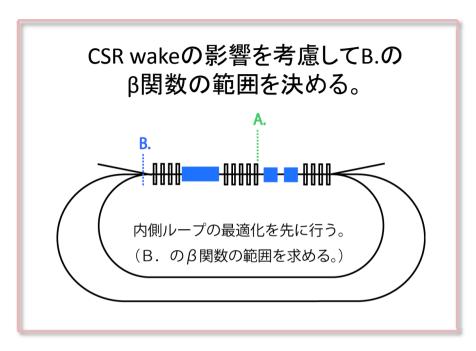

ラティス設計の進捗状況

ERLビームダイナミクスWG 2010年12月22日(水) 14:00 ~ 3号館7F会議室

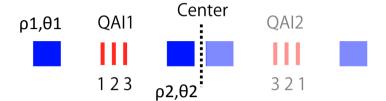
> 加速器第7研究系 島田 美帆


cERLのOptics設計方針

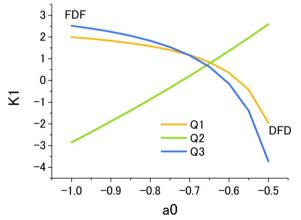

- S2Eシミュレーション
 - 場所によって異なるコードで最適化し、繋げる手法。
 - cERLでは、5 MeV以上に加速するまではGPT、その後はelegant(もしくはSAD)で最適化。


これまでの状況

- elegantによる周回部の計算
 - 入射合流部の出口で2通りのTwiss parameterを想定し、Opticsを計算した。
 - Case 1 (βx , αx , βy , αy) = (13 m, -2, 0.7 m, 0)
 - Case 2 (βx , αx , βy , αy) = (47.1 m, 1.65, 21.5 m, 5.52)
 - CSR wakeの影響のもとtrackingした結果、Case 2でエミッタンス増加が見られた。Phase matchingが悪かったためと考えられる。

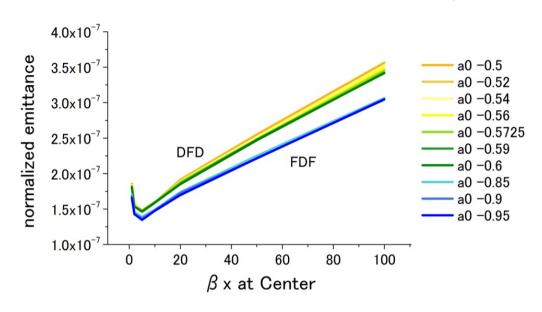

内側ループのOpticsの計算

- 内側ループの最適化
 - Bend間の転送行列によると、QuadのK値の 組み合わせは自由度がaOひとつのみ
 - Opticsを左右対称とすると、変数はCenterの β関数のみ。


CSR wakeに関わる変数はa0とβxの2つのみであるため、手計算で最適化を試みる。

isochrinous TBA

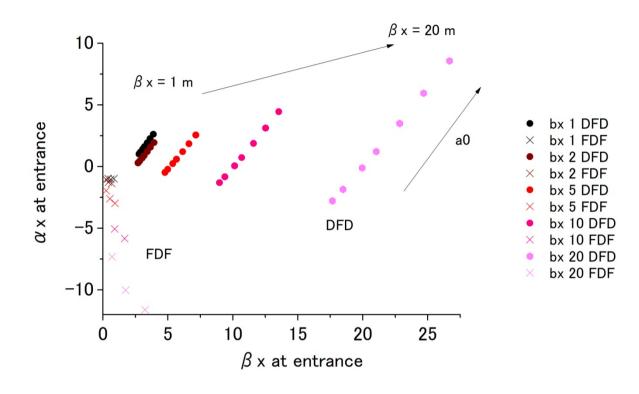
$$\begin{split} M_t &= \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} a_0 & \frac{\Phi_1 - a_0 \rho_1 (1 - \cos \theta_1)}{\sin \theta_1} \\ \frac{a_0 \Phi_2 - \sin \theta_1}{\Phi_1} & \frac{1 + m_{12} (a, \theta_0) m_{21} (a, \theta_0)}{a} \end{pmatrix} \\ \Phi_1 &\equiv \rho_2 \left(-\frac{\theta_1 + \theta_2}{\tan \theta_2} + \frac{\sin \theta_1}{\tan \theta_2} + \frac{R_{56}}{\tan \theta_2} + 1 \right) \\ \Phi_2 &\equiv -(\theta_1 + \theta_2) + \sin \theta_1 + R_{56} \end{split}$$


この転送行列ではCenterのドリフトを無視している ため、微調整が必要。

転送行列m11成分:a0と各QのK値の関係

内側ループのCSR wakeの影響

変数はCenterのβxとa0のみ



電子数 電子エネルギー	10000個 125 MeV
規格化エミッタンス	1x10 ⁻⁷
エネルギー広がり	2x10 ⁻⁴
バンチ長	3 ps

- Centerのβxが1~20mの範囲では規格化エミッタンスの増加Δεnxを2倍以下に抑えることが可能。
- どのa0においても、Centerのβxが5m付近で、Δεnxが最小になる。
- DFDよりFDFの方がΔεnxを小さく抑えられるが、わずかな差である。
- 全てのベンドのPhase matchingが関わっている。

極性(DFD, FDF)に大きな依存性はないため、Centerのβxが1~20 mを最適なOpticsとする。

内側ループ入口のβx関数の範囲

- Centerのβx関数を1~20mに制限すると、内側ループ入口のβx関数の取り得る範囲も決まる。
- DFDの場合、Centerとentranceのβx関数はほぼ同じである。
- FDFの場合、βxを小さくする必要があるため、Opticsのマッチングは難しくなるだろう。

DFDに限定し、ドットの分布する台形の範囲内で探す。

内側ループのβy関数

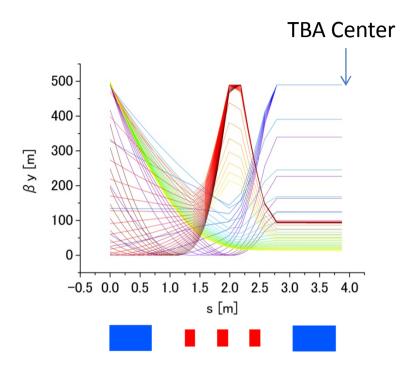


Fig.1: TBAΦβy

- -0.5425 < a0 < -0.9475の範囲のβyを0.0025のステップで表示。
- 最大値が500mになるようにCenterのβyを設定。

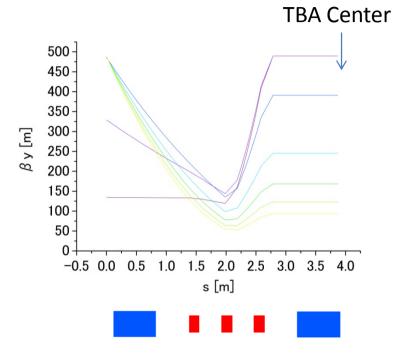
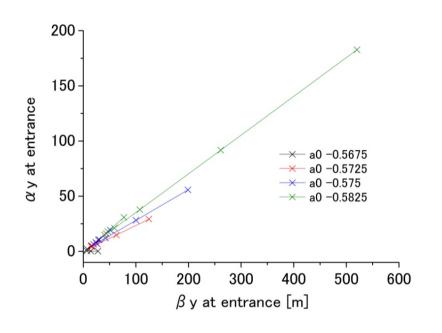



Fig.2: Fig.1から選んだβy

- Fig.1から、βyの最大値と最小値の比が10以下になるものを選択。(滑らかなβyを選択。)
- 極性はDFD(a0の絶対値が小さい)ものに限定。
- Centerのβyが変化すると、β関数の形状は崩れるが、ここでは無視した。

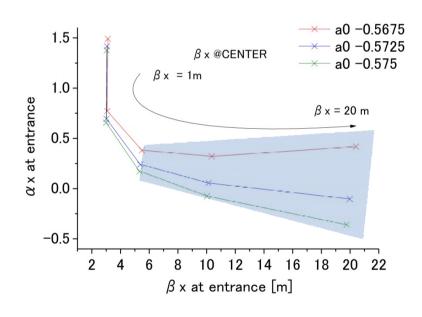
転送行列のm11成分、a0は-0.5275から-0.5825の間に限定

内側ループ入口のβyおよびαyの範囲

40 β v @CENTER $\beta y = 100 \text{ m}$ 30 - $\beta y = 1m$ α y at entrance 20 10 a0 -0.575 a0 -0.5825 0 60 20 40 100 120 0 80 β y at entrance [m]

Fig.1: a0と内側ループ入口のαyおよびβyの関係

Fig.2: Fig.1の拡大図


- a0が-0.5825の場合、内側ループ入口のαyは最小でも10を超える。
- a0が-0.575の場合、内側ループ入口のαyは最小でも7程度。
- a0の絶対値が小さくなると、内側ループ入口のαyは小さくすることが可能。

Matchingが困難なため、a0の範囲を-0.5275から-0.575の間に狭める。

内側ループ入口のβxおよびβyの範囲:まとめ

制約条件

- Δεnxを2倍以下に抑えるため、CENTERのβx範囲は1~20 mとした。
- 内側ループ入口のβxのマッチングのため、極性はDFD (a0>-0.6)とした。
- 滑らかなβy関数にするため、a0の範囲を-0.5675~-0.5825とした。
- 内側ループのβyのマッチングのため、a0の範囲を-0.5675~-0.575に制限した。

 β y @CENTER β y = 100 m β y = 1m β y = 100 m β y = 1m β y = 100 m β y = 1m β y = 0 -0.5675 β a0 -0.5725 β 10 β y at entrance [m]

Fig.1:内側ループ入口のβxおよびαxの適切な範囲

Fig.1: 内側ループ入口のβyおよびαyの適切な範囲