cERLのBeam Opticsの続き

ERLビームダイナミクスWG 2011年2月2日(水) 3号館7階会議室 14:00~

> 加速器第7研究系 島田 美帆

Optics 設計の 現状

Case 2: 入射合流部出口で (β_x , α_x , β_y , α_y) = (47.1 m, 1.65, 21.5 m, 5.52)の場合

図1: Case 2は1周目の内側ループですでに 規格化エミッタンスが10倍近くまで増加。

図2: Case2の1周目内側ループの Return arcの直前のPhase Space

cERLのOptics設計方針

• S2Eシミュレーション(Start-to-End)

– 場所やエネルギーによって、異なる計算コードで最適化し繋げる手法。

内側ループの最適化

- エミッタンスの増加は分散部のみで起こる。(十分高いエネルギーの場合)
- ・ 先に内側ループのOpticsを決定した後に、直線部の最適化を行う。

- 10個の変数を3個まで少なくした。(手作業による最適化が可能に。)
- 最近のラティスの変更に伴い、計算し直した。

図: 内側ループのEntranceからCenterまでの β_y 関数。Centerを中心に対称である。

(a) $-0.55 < m_{11} < -0.9$ に対する分散部の β_v 関数の形状。

(b) 図8(a)の β_{v} 関数のうち、集光点を持たない滑らかな関数を抜粋したもの。

 β_y 関数に影響する変数は m_{11} および β_y ^{Cent}の2つであるが、 β_y ^{Cent}は β_y 関数の形状に大きな影響を与えないと仮定した。 β_y 関数の形状が滑らかになる m_{11} の範囲は以下の様になった。

LIMIT 1 : -0.6 $< m_{11} < -0.62$ (DFD), $-0.84 < m_{11} < -0.87$ (FDF)

CSR wakeによるエミッタンス増加

• エミッタンス増加に関わる変数は β_x および m_{11} のみである。

図: 内側ループ半周後のエミッタンス増加。運動エネルギー35MeV, バンチ長3ps, *ε*_{nx} = 0.3 mm-mrad, 電荷量77pCである。トラッキング粒子数は10000。

 $\Delta \varepsilon_{nx}$ に影響する変数は m_{11} および β_x^{Cent} の2つであるが、 m_{11} の影響は β_x^{Cent} に比べて微少である。適切な β_x^{Cent} の範囲を $\Delta \varepsilon_{nx}$ が2倍以下に抑えられる範囲とした。

LIMIT 2 : 1 m $< \beta_x^{Cent} < 20$ m

Entranceでのβ関数のマッチングによる制限

FDFのケースでは、Entranceで (a_x, β_x) の取り得る範囲が狭く、マッチングが困難。 変数m₁₁ < -0.61ではEntranceで $a_y > 10$ の解しか存在しない。

LIMIT 3 :
$$-0.6 < m_{11} < -0.61$$

LIMIT 1~3により、

の範囲がB.のTwissパラメータの取り得る範囲となる。

A.のTwiss parameterの範囲の導出

- エミッタンス増加が最小となるのは $\beta_x^{Cent} = 5 \text{ m}$ のときである。
- 内側ループのCenterで(β_x^{Cent} , β_y^{Cent}) = (5 m, 5 m)、 m_{11} =0.61のケースのみで計算した。

点A.のtwiss parameterの範囲

入射器Gr.に伝えた範囲

betay/betax [m]	10	20	30	40	50	60	70	80	90
10	21.4	10.7	2.1	0.6	0.2	0.0	0.1	0.2	3.1
15	15.9	9.1	6.0	0.7	1.2	0.2	3.2	3.9	4.3
20	19.6	20.7	5.5	0.2	1.9	3.3	4.0	4.8	5.5
30	16.6	0.7	12.0	4.8	0.8	10.4	5.3	6.5	7.3
40	21.2	19.4	8.6	61	2.1	3.0	6.7	8.3	8.8
50	3.9	3.3	1.2	2.0	2.9	3.6	4.5	7.1	10.2
60	7.6	4.8	2.5	3.4	4.8	5.4	3.5	12.9	10.7
70	5.0	4.0	0.9	2.2	4.6	5.7	5.1	9.4	13.4
80	12.2	9.9	5.4	11	4.5	57	2.7	0.6	15.4
90	13.4	0.9	4.1	0.8	5.0	6.0	1.6	0.1	3.3

本来の範囲(島になっている。)

betay/betax	[m]	10	20	30	40	50	60	70	80	90
	10	21.4	10.7	2.1	0.6	0.2	0.0	0.1	0.2	3.1
	15	15.9	9.1	0.0	0.7	1.2	0.2	3.2	3.9	4.3
	20	19.6	20.7	5.5	0.2	1.9	3.3	4.0	4.8	5.5
	30	16.6	0.7	12.0	4.8	0.8	10.4	5.3	6.5	7.3
	40	21.2	19.4	8.6	6.1	2.1	3.0	6.7	8.3	8.8
	50	3.9	3.3	1	2.0	2.9	3.6	4.9	7.1	10.2
	60	7.6	4.8	2.5	34	4.8	5.4	3.5	12.9	10.7
	70	5.0	4.0	0.9	2.2	4.6	5.7	5.1	9.4	13.4
	80	12.2	9.9	5.4	11	4.5	5.7	2.7	0.0	15.4
	90	13.4	0.9	4.1	0.8	5.0	6.0	1.6	0,1	3.3

点A.のFittiingの方針

- (bx, by, ax, ay)の4つ全てを一致することは困難。
- β関数は正確にfitするようにした。
- αはゼロ付近になるようにした。
- Equationに重みを付けた。
- β関数の範囲は10~90m。

点A.のFittiingの結果

- 全てのケースでβ関数は正確にfitできた。
- αはゼロから外れるケースが多かった。
- 左図はax, ayの絶対値の最大値。ゼロから外れているほど、fittingがよくないことを示す。

赤	:	悪い
オレンジ	:	普通
黄緑	:	良い

elegant命令文

equation = "0 betax 10 - abs 10 * + betay 10 - abs 10 * + alphax 0 - abs + alphay 0 - abs + ",

電子バンチの条件を変更

• CSR wakeの影響が異なるので、 β_x^{Cent} の条件が変わる。

以下の3つの条件で計算

- 35 MeV, 77pC, 0.3 mm-mrad, 3 ps
- 35 MeV, 7.7pC, 0.1 mm-mrad, 3 ps
- 125 MeV, 77pC, 0.3 mm-mrad, 3 ps

- ・ どのケースも、 $\beta_x^{Cent} = 5 \text{ m}$ のときにエミッタンス増加が最小になる。
- 35 MeV, 77 pCのケースが最もCSR wakeの影響が大きい。
- 125 MeVのケースは35 MeVのケースに比べてエミッタンス増加がおよそ1/3~1/4である。 (エネルギーに反比例か?)
- 7.7 pCのときは、35MeVの場合でもCSR wakeの影響は無視してよさそう。
- バンチ長が1psまで短くなると、さらにエミッタンス増加は大きくなる。

LIMIT 2:1 m < β_x^{Cent} <20 m (35 MeV, 77pC), 5 m < β_x^{Cent} <50 m (125 MeV, 77 pC), 制限なし (35 MeV, 7.7pC)

まとめ

- CSR wakeによるエミッタンス増加が問題になったため、Opticsの再計算を行っている。
- CSR wakeの影響はほとんど内側ループ中央の β_x で決まり、 β_x =5 m が最適である。
- 分散部のトリプレットの極性は、マッチングの容易なDFDとした。
- S2Eシミュレーションの切り替え箇所(点A.)のtwiss parameterの暫定案を求めた。
- 7.7 pC、3 psの場合は、CSR wakeの影響はほとんどないため、ビームサイズはβ関数でほぼ決まる。