STF空洞のERLへの適用に関するBBUの計算

- ・ 目的(経緯)と方法
- ・羽島氏の計算との比較
- 6GeV ERL @JAEAの計算結果との比較
- STF空洞をERLに適用した場合の結果
 - HOM parameterの単純な置き換え
 - HOM Randomizationを考慮した場合
 - HOMを増やした場合
 - 増やしたHOMの場合のRandomizationの結果
 - TE iris modeの考慮
 - ERL空洞の場合で20MHzまで延長した結果
- ・まとめ

目的(経緯)と方法

• 目的(経緯)

- 山口主幹よりSTF空洞をERLに適用した場合のHOM BBUの計算 を依頼される(昨年11月頃)。
- 実際に置き換えた場合にどれほどのビーム電流が見込めるか? を検証する。特に、HOM Randomizationが1MHzの場合に100mA に到達できるかどうかを検証する。

方法

- Cornell大学のIvan Bazarov氏の開発したbi (Beam Instability Code)を用いて計算する。
- JAEAの羽島氏がKEK Report 2007-7(コンパクトERLの設計研究)で行ったプログラムを借用する。
- 羽島氏のプログラム中ではHOMやOptics条件を定義すると、自動的にbiの初期条件として組み込めるようになっている。
- 実行スクリプトはPerlで行っている。

biとは何か?

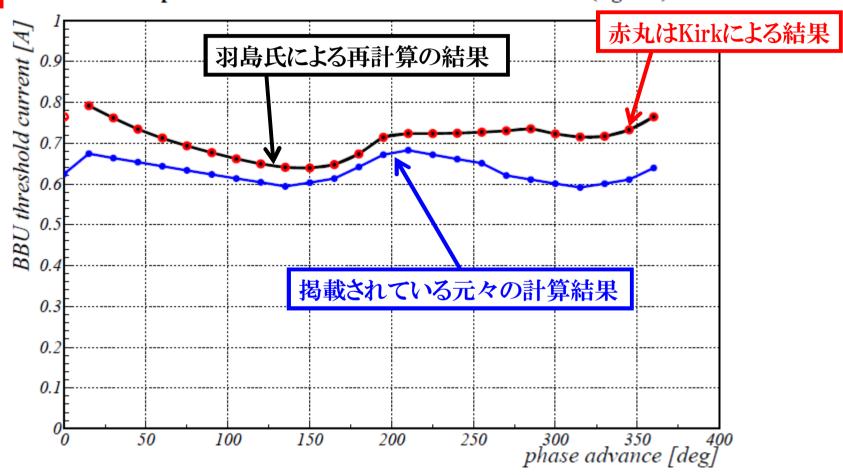
- Cornell大学のIvan Bazarov氏により開発されたコード
- ・ 関連ホームページは以下の通り
 - biに関するホームページ
 - http://www.lepp.cornell.edu/~ib38/bbu/
 - Ivan Bazarov氏のホームページ
 - http://www.lepp.cornell.edu/~ib38/
- このページに置いてあるドキュメントを読むと、ユーザーは以下の パラメータを自分で決めて、その後biを走らせよ、という説明書 きがある。
 - Parameter file
 - ・ beam energy, beam currentなど
 - Lattice file
 - 6x6 transfer matrixの各成分
 - HOM data file(今回の計算で変更する箇所)
 - R/Q, Q, f, polarization (0 $^{\circ}$ or 90 $^{\circ}$)

様々なBBU計算コード

- BBUの計算にはすでに以下のようなコードが用意されている。 Nuclear Instruments and Methods in Physics Research A 557 (2006) 176-188より
 - BBU-R (JAERI)
 - TDBBU (J-lab)
 - New Code (J-Lab)
 - bi (Cornell Univ.)
 - MATBBU (J-Lab)

羽島氏のプログラムの内容

- 羽島氏のプログラム(C言語)ではbiの初期条件であるLatticeデータを計算し、HOMなどの他のパラメータと共に入力ファイルとして用意するようになっている。
 - Latticeデータは手で打ち込むには膨大のため
- 実行スクリプトはPerlで、HOM Randomizationはこの中で行っている。
 - HOMのばらつき具合をガウス分布とし、幅 σを少しずつ変更させながら各 σ 毎 に10回ずつ計算を行うようになっている(ガウス分布のサンプル数が10個ということ)。 ガウス分布の±1σに66%が含まれることを考えると10回というのは少ないように思われるが、計算が長時間かかるためとりあえず10回としているようである。


羽島氏の計算結果との比較

- STF空洞のERLへの適用についての計算を行う前に、羽島氏が以前 行った計算と同じ結果が得られるかどうかをまず行った。
- 具体的には、「コンパクトERLの設計研究」のp.125~126に載っている図3.33, 図3.34, 図3.35が再現するかどうかを確認した。
- ・ 結果は次ページ以降に載せてあるが、図3.33及び図3.35は羽島氏の結果と一致した。図3.34のクロスチェックは羽島氏が多忙のため行っていない(図3.34の計算は他の二つに比べて時間がかかる)。
- ・ ただし、羽島氏が以前行った計算はbi中の計算精度を決めるパラメータがデフォールトの0.1%から5%に上げて行っていたため(マシンパワーが非力であったことによる)、以前の結果とは異なっているが、再度羽島氏により計算が行われ、最新の結果が得られている。

羽島氏の計算結果との比較①

 $\boxtimes 3.33$

Comparison of HOM BBU Calculation for cERL (fig3.33)

両者ともに良く一致している。

ERL Beam Dynamics WG Meeting @2011/3/8

羽島氏の計算結果との比較②

図3.34

Comparison of HOM BBU Calculation for cERL (fig3.34)

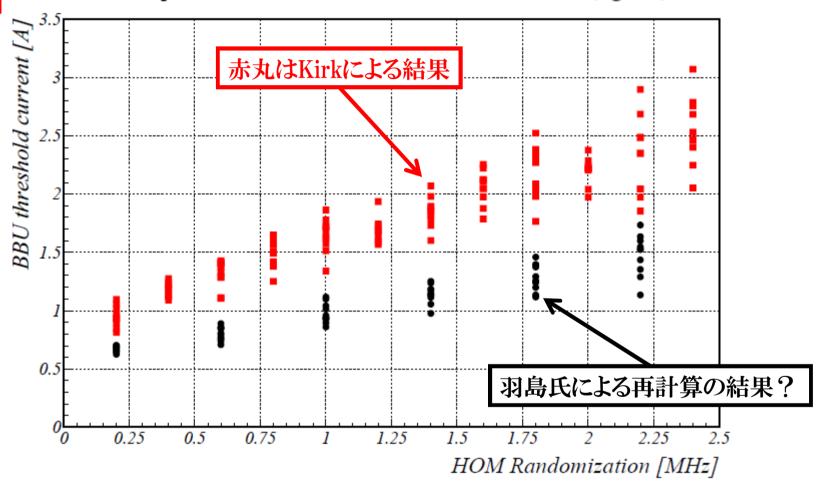
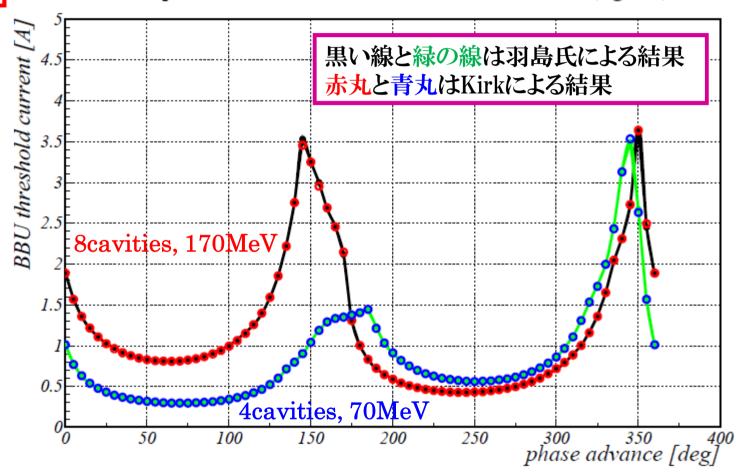



図3.34に掲載されている結果は羽島氏から頂いたファイルには無かった。 代わりに別の条件下で行われたと思われる結果があり、それが黒点のプロットである。 Kirkによる結果(赤点)は、むしろ元々の計算結果に近いように見える。

羽島氏の計算結果との比較③

図3.35

Comparison of HOM BBU Calculation for cERL (fig3.35)

両者ともに良く一致している。

ERL Beam Dynamics WG Meeting @2011/3/8

以上で羽島氏の計算との照合は無事終了したことにして、いよいよSTF空洞のERLへの適用についての計算を行なうことにした。

STF空洞をERLに適用した場合

計算の手順

- ① 6つのHOMのパラメータを入れ替えてみる
- ② 6つのHOMの場合でRandomizationを行ってみる
- ③ HOMの数を増やしてみる
- ④ 増やしたHOMの場合でRandomizationを行ってみる(失敗)
- ⑤ TESLAのHOMパラメータで行ってみる
- ⑥ TESLAのHOM Randomizationを行ってみる(失敗)
- ⑦ STF空洞にTESLAのTE-iris modeを追加してみる(7 HOMs)
- ⑧ ⑦の場合のHOM Randomizationを行ってみる
- 9 HOM Randomization®で10MHzまでの計算を行ってみる。
- ⑩ HOM Randomization®で繰り返しを20回にしてみる。

計算に使用したPCのスペックと計算時間

	PC1	PC2	
Specification (CPU / Memory)	AMD Opteron Processor 248 / 2.1GB	Dual-Core AMD Opteron Processor 2222 / 4.1GB	
Test#	Calc	ulated time [sec]	
1	45190	32578	
2	222684	159237	
3	130942	93230	
4	not finished	not finished	
5	39005	27570	
6	not finished	not finished	
7	53167	37175	
8	259904	Not recorded	
9	234936	167661	
10	511137	364587	

Test④だけはHOMのパラメータが多すぎるのか計算が途中終了し最後まで行えなかった。

HOMのパラメータを入れ替える

梅森氏より

f [GHz]	R/Q [Ω]	Q
4.011	4.542	1.141×10^4
1.856	48.32	$1.698 x 10^3$
2.428	26.26	$1.689 x 10^3$
4.330	0.02186	6.068×10^5
3.002	0.8210	$2.999x10^4$
1.835	54.68	$1.101 x 10^3$

_ \
_ /

加古氏と渡邉氏より

f [GHz]	$R/Q[\Omega]$	Q
1.719	42.00	$4.370 x 10^3$
1.878	25.40	$1.050 \mathrm{x} 10^5$
1.604	0.448	$3.840 \mathrm{x} 10^5$
1.688	10.98	$1.450 \mathrm{x} 10^4$
1.887	7.880	$2.150 \mathrm{x} 10^5$
1.895	0.400	$4.720 \mathrm{x} 10^5$

羽島氏の計算で使われていたHOM

※STF空洞のR/Qはビーム軸から 20mmのところでMAFIAで計算した (ビームパイプの半分のところ)。 fとQはS1-Globalにおける4K冷却時の ネットワークアナライザによる測定値で、 インピーダンスの高い順に6つ選んである。 HOMはTM₁₁₀またはTE₁₁₁である。

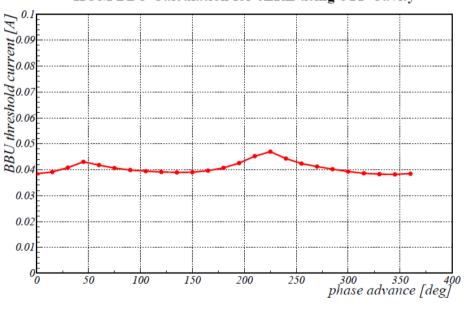
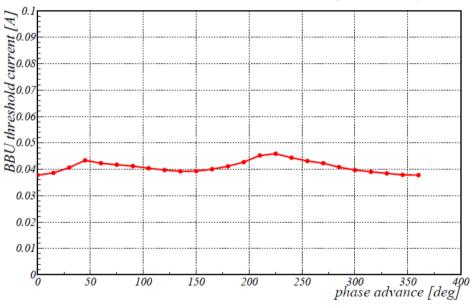
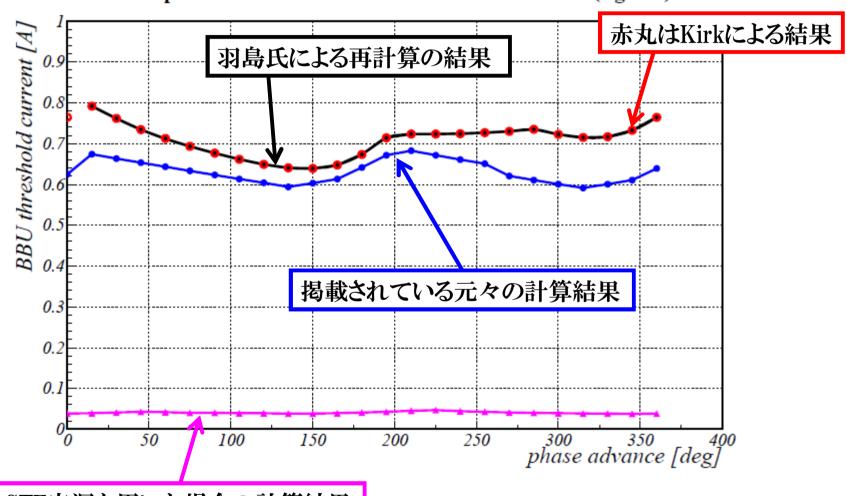

計算結果①

図3.33と同様の計算を行ってみる


6個のHOMの場合

18個のHOMの場合 (TM₁₁₀とTE₁₁₁の全て)

HOM BBU Calculation for cERL using STF Cavity

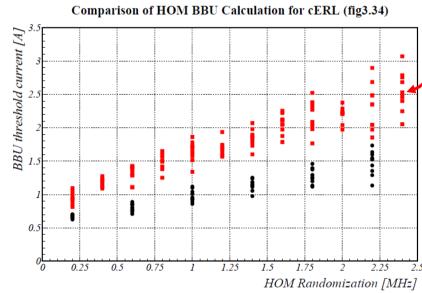

比較的インピーダンスの低いHOMの数を増やしても 計算結果にはあまり影響を与えないようである。 計算時間が長くなるだけであまり意味が無いため、 今後は前出の6個のHOMのみ考慮することにする。

ERL Beam Dynan TE iris modeは含まれていない Meeting @201

計算結果2

図3.33との比較

Comparison of HOM BBU Calculation for cERL (fig3.33)

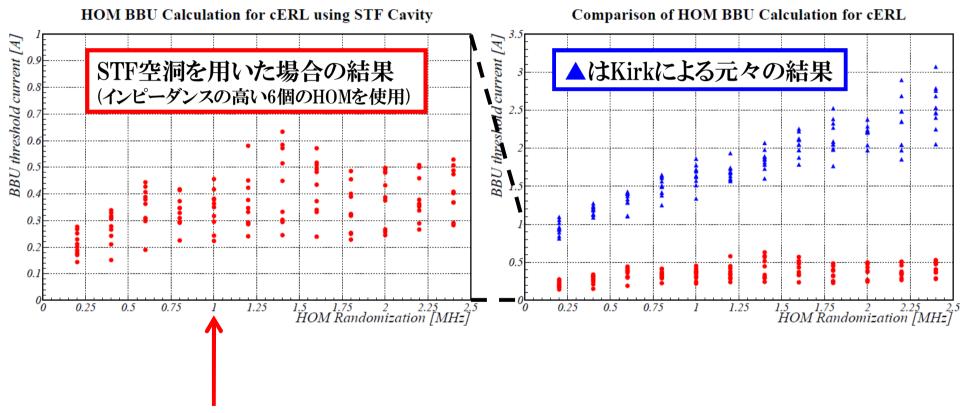


STF空洞を用いた場合の計算結果

ERL Beam Dynan Meeting @201 TE iris modeは含まれていない

HOM Randomizationの入れ方

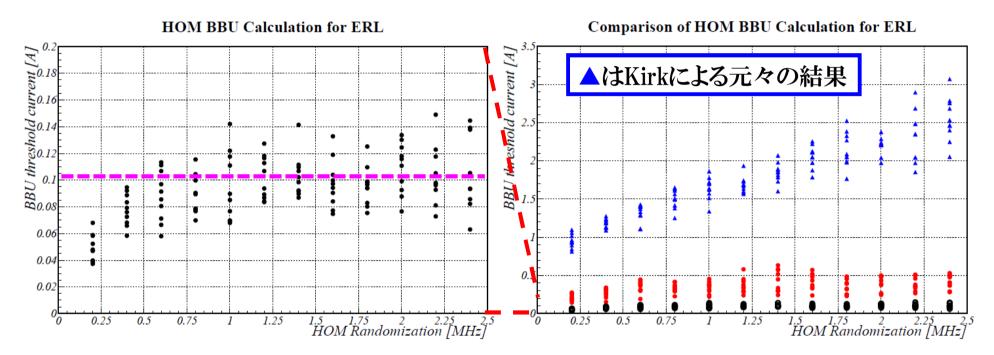
- ・ あるHOM周波数(複数可)を中心として、ある幅σを持ったガウス分布でHOM周波数を振ってbiの計算を行う。
- 各のにおける計算回数はdefaultで10回となっている。
 - この回数が十分であるかどうかは要検討。


この各点が10個ずつあるということ

HOM周波数の幅のに相当

ERL Beam Dynamics WG Meeting @2011/3/8

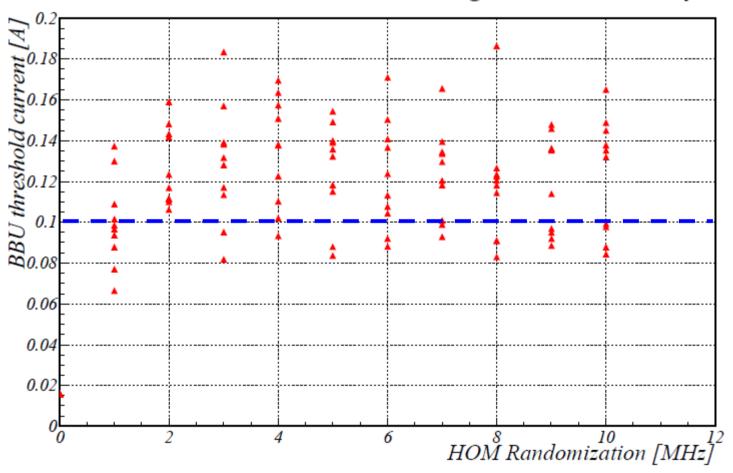
計算結果③


図3.34との比較

1MHzで100mAは超えているようである。 1MHz以上ではthreshold currentはサチっているように見える。

計算結果④

図3.34との比較


STF空洞を用いた場合の結果。 目標の100mAには到達していない。 (インピーダンスの高い6個のHOMにTE iris modeを追加。 ただし、パラメータはTESLAのもの。)

STF空洞はエンドセルが対称のため、TE iris modeのdampingはさらにきつく、 Q_{ext} で一桁以上高くなるものと推測されている。

計算結果5

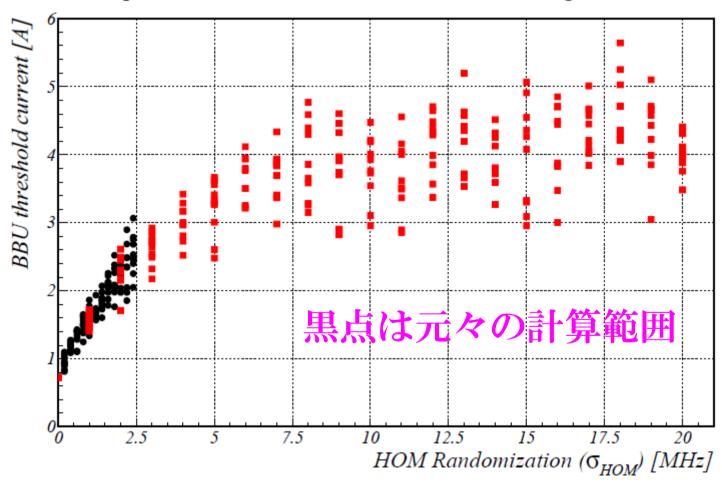
STF空洞を用いて10MHzまで延長した場合の結果。

HOM BBU Calculation for ERL using STF+TESLA cavity

ERL Beam Dynamics WG Meeting @2011/3/8

ERL空洞を用いた再計算の続き

計算の手順

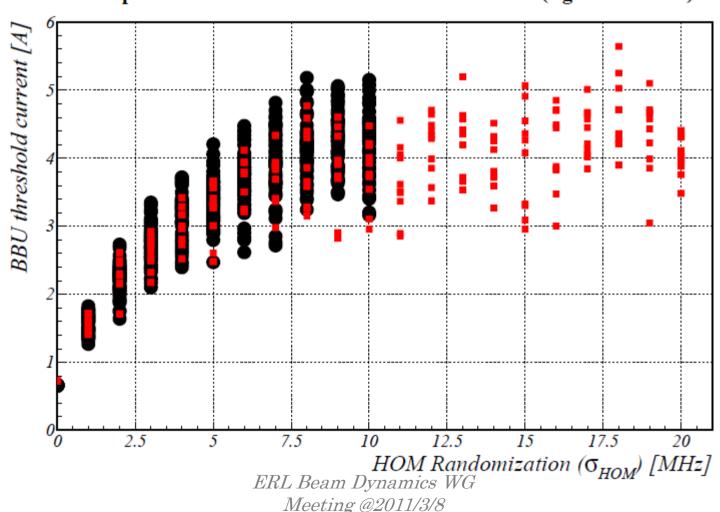

- ① ERL空洞の場合で20MHzまで延長してみる。
- ② ERL空洞の場合で繰り返しを50回にしてみる。

	PC1	PC2		
Specification (CPU / Memory)	AMD Opteron Processor 248 / 2.1GB	Dual-Core AMD Opteron Processor 222 / 4.1GB		
Test#	Calculated time [sec]			
1	390693	145148		
2	_	722267		

ERL空洞を用いた再計算の続き①

ERL空洞を用いて20MHzまで延長した場合の結果。

Comparison of HOM BBU Calculation for ERL (fig3.34 revised)



ERL Beam Dynamics WG Meeting @2011/3/8

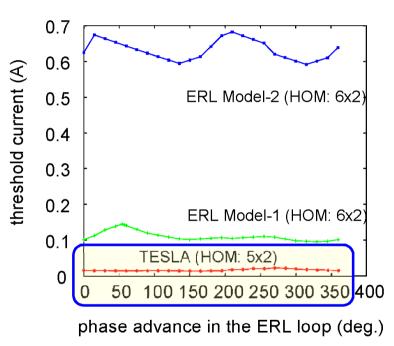
ERL空洞を用いた再計算の続き②

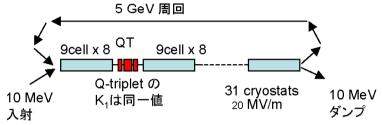
ERL空洞を用いた場合の繰り返し数を変えた結果。 10回(赤点)と50回(黒点)の比較。

Comparison of HOM BBU Calculation for ERL (fig3.34 revised)

BBU-Rの計算(HOMデータ) _{羽島氏の資料より}

ERL=TESLA+ビームパイプ拡張+HOM吸収体


	ERL	freq (Hz)	Q	R/Q*Q(Ω/m^2)	R/Q(Ω/m^2)	λ(m)	$R/Q(\Omega)$
		2.575E+09	4.890E+03	1.0444E+09	2.1358E+05	0.1164	73.33
		1.873E+09	1.160E+04	1.0215E+09	8.8060E+04	0.1601	57.15
(DD::::1		1.866E+09	7.730E+03	4.9745E+08	6.4353E+04	0.1607	42.08
TE-iris mod	e	1.879E+09	1.830E+04	5.5875E+08	3.0533E+04	0.1595	19.69
		3.082E+09	3.360E+04	3.2902E+08	9.7923E+03	0.0973	2.35
- 1	TESLA	2.575E+09	5.000E+04	1.1900E+10	2.3800E+05	0.1164	81.72
		1.875E+09	5.110E+04	4.4968E+09	8.8000E+04	0.1599	56.99
		1.865E+09	5.060E+04	3.2890E+09	6.5000E+04	0.1607	42.54
1		1.881E+09	9.510E+04	1.7118E+09	1.8000E+04	0.1594	11.58
I may to	1)) ((===	1.887E+09	6.330E+05	1.2660E+09	2.0000E+03	0.1589	1.28


TE-iris modeはSTF空洞の計算では考慮されていない

各周波数モードがx、y方向にあるとした

HOM randomization の効果(1)

周回のベータトロン位相進みと閾値電流 (BI)

入射エネルギー E_{inj} = 10 MeV 周回エネルギー E_{loop} = 5 GeV リニアックを含めた周長 L = 1466.1 m (RF x 6357.5) 加速勾配 E_{acc} = 20 MV/m 収束磁石 QT K_1 = 2 m⁻² (BI) K_1 = 最適化 (BBU-R)

羽島氏のスライドに書かれてある $(R_t/Q)*Q_{ext}/f_{HOM}$ を比較してみる①

ここに R_t/Q の単位は $[\Omega/m^2]$ で、 $(R/Q)*k^2=R_t/Q$ の関係にある。

STF空洞の場合

$ m f_{HOM}\left[GHz ight]$	R/Q [Ω]	$\mathrm{Q}_{\mathrm{ext}}$	$R_t/Q [\Omega/m^2]$	$(R_t/Q)*Q_{ext}/f_{HOM} [\Omega/m^2/Hz]$
1.719	42.00	$4.370 x 10^3$	$5.457 \mathrm{x} 10^4$	0.139
1.878	25.40	$1.050 \mathrm{x} 10^5$	$3.938 \text{x} 10^4$	2.202
1.604	0.448	$3.840 \mathrm{x} 10^5$	$5.068 x 10^2$	0.121
1.688	10.98	$1.450 \mathrm{x} 10^4$	$1.376 \mathrm{x} 10^4$	0.118
1.887	7.880	$2.150 \mathrm{x} 10^5$	$1.233 x 10^4$	1.405
1.895	0.400	$4.720 \mathrm{x} 10^5$	$6.316 \mathrm{x} 10^2$	0.157

※STF空洞のbiの計算ではTE-iris modeが考慮されていないため、threshold currentがTESLAの場合に比べて高めに出る傾向にある。

羽島氏のスライドに書かれてある $(R_t/Q)*Q_{ext}/f_{HOM}$ を比較してみる②

ここに R_t/Q の単位は $[\Omega/m^2]$ で、 $(R/Q)*k^2=R_t/Q$ の関係にある。

ERL空洞の場合

f _{HOM} [GHz]	R/Q [Ω]	${f Q}_{ m ext}$	$ m R_t/Q~[\Omega/m^2]$	$(R_t/Q)*Q_{ext}/f_{HOM} [\Omega/m^2/Hz]$
4.011	4.542	$1.141 x 10^4$	$3.210 \mathrm{x} 10^4$	0.0913
1.856	48.32	$1.698 x 10^3$	$7.311 x 10^4$	0.0669
2.428	26.26	$1.689 x 10^3$	$6.800 \mathrm{x} 10^4$	0.0473
4.330	0.02186	$6.068 \mathrm{x} 10^5$	$1.800 \mathrm{x} 10^2$	0.0252
3.002	0.8210	$2.999 x 10^4$	$3.250 \mathrm{x} 10^3$	0.0325
1.835	54.68	$1.101 x 10^3$	$8.087 \mathrm{x} 10^4$	0.0485

TE-iris mode

羽島氏のスライドに書かれてある $(R_t/Q)*Q_{ext}/f_{HOM}$ を比較してみる③

ここに R_t/Q の単位は $[\Omega/m^2]$ で、 $(R/Q)*k^2=R_t/Q$ の関係にある。

TESLA空洞の場合

$ m f_{HOM} [GHz]$	$R/Q[\Omega]$	$ m Q_{ext}$	$ m R_t/Q~[\Omega/m^2]$	$(R_t/Q)*Q_{ext}/f_{HOM} [\Omega/m^2/Hz]$
(2.575)	81.72	$5.000 \mathrm{x} 10^4$	$2.380 \mathrm{x} 10^{5}$	4.621
1.875	56.99	$5.110 \mathrm{x} 10^4$	$8.800 \mathrm{x} 10^4$	2.398
1.865	42.54	$5.060 \mathrm{x} 10^4$	$6.500 \mathrm{x} 10^4$	1.764
1.881	11.58	$9.510 \mathrm{x} 10^4$	$1.800 \mathrm{x} 10^4$	0.910
1.887	1.28	$6.330 \mathrm{x} 10^5$	$2.000 \mathrm{x} 10^3$	0.671

TE-iris mode

まとめ

- bi及び羽島氏のプログラムを用いて、STF空洞をERLに適用した場合のHOM BBU について計算した。
- 羽島氏が以前行った計算結果との比較を行い、お互いの結果がよく一致している ことを確認した。また、計算精度を高めて再計算を行った結果、threshold current が高い方にずれることも確認した。
- STF空洞をERLに適用するにあたり、6つのHOMのパラメータを入れ替えて計算を 行った。それ以上HOMの数を増やしても計算結果はあまり変わらなかった。ただし、 TE-iris modeはSTF空洞におけるRFパラメータが不明なため考慮されていなかっ たが、考慮して再計算を行った。
- STF空洞をERLに適用した場合のHOM Randomizationの計算を行ったところ、 1MHzで100mA超のthreshold currentを得た。ただし、最も主要なファクターであると思われるTE-iris modeは考慮されていなかったが、考慮して再計算を行ったところ、60mA超のthreshold currentを得た。1MHz以上ではサチっているようである。
- ERL空洞のHOM Randomizationの計算を20MHzまで延長して行った。