Bunch length measurement using the tran sverse electric field in injector cavity

Ji-Gwang Hwang, Eun-San Kim and Tsukasa Miyajima

Motivation

The SC injector cavity also has the transverse electric field which can cause the correlation between the bunch length and beam siz e as like TR(deflecting) cavity.

The strength of transverse electric field is depend on the phase of RF field in cavity and the displacement of orbit at the entrance of c avity.

The variation of the beam size as a function of the phase

The beam size as a function of the phase can be explained by the linear function such as

$$f(\varphi) = a_0 + a_1\varphi + a_2\varphi^2 + a_3\varphi^3$$

From this estimation, the beam size dependency of a_0 was observed as a 2nd order linear function.

$$a_0(\sigma_z) = b_0 + b_1 \sigma_z + b_2 {\sigma_z}^2$$

Signal processing

3 Dimensional profile of the beam on scree n is hard to analyze the signal and also has the large data size. Hence, the data was g ot from the projection on each axis. This me thod is quite comfortable and reasonable to analyze the data except the amplification o f the effect of the noise.

Signal processing

Signal processing

The noise was removed and then we can get the clear peak of the beam pr ofile. From this profile, the fitting of th e data was performed by using followi ng formula.

$$y(x) = a e^{-\frac{(x-b)^2}{2c^2}} + d$$

After the filtering of the noise signal fr om the raw data, the inverse fourier tr ansform was performed to get the info rmation about beam size

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$

Experimental result [Horizontal a₀]

From above technique, the beam size was precisely calculated from the me asurement data on c-ERL injector sys tem.

From the fitting of beam size data, the coefficient of the 3rd order linear funct ion was determined.

 $f(\varphi) = a_0 + a_1 \varphi + a_2 \varphi^2 + a_3 \varphi^3$ Here, $a_0 = 0.578 \pm 0.029$ mm.

From the calculation data, it is corres pond to the 1.87 ± 0.58 ps.

Experimental result [Horizontal a₁]

The bunch length can be also estimat ed by the a_1 factor calculated by the fi tting from beam size data.

From the fitting of beam size data, the coefficient of the 3rd order linear funct ion was determined.

$$f(\varphi) = a_0 + a_1\varphi + a_2\varphi^2 + a_3\varphi^3$$

Here $a_1 = -0.00907 \pm 0.00529$ mm/deg.

It is correspond to the 3.41 ± 2.40 ps.

Experimental result [Vertical a₀]

From above technique, the beam size was precisely calculated from the me asurement data on c-ERL injector sys tem.

From the fitting of beam size data, the coefficient of the 3rd order linear funct ion was determined.

$$f(\varphi) = a_0 + a_1\varphi + a_2\varphi^2 + a_3\varphi^3$$

Here, $a_0 = 0.620 \pm 0.0340$ mm.

From the calculation data, it is corres pond to the 2.60 ± 0.534 ps.

Experimental result [Vertical a₁]

The bunch length can be also estimat ed by the a_1 factor calculated by the fi tting from beam size data.

From the fitting of beam size data, the coefficient of the 3rd order linear funct ion was determined.

$$f(\varphi) = a_0 + a_1\varphi + a_2\varphi^2 + a_3\varphi^3$$

Here $a_1 = -0.00664 \pm 0.00338$ mm/deg.

It is correspond to the **2.28 ± 1.78 ps**.

Discussion

- New method for measuring the bunch length using the tra nsverse electric field in a cavity was suggested and studi ed as preliminary.
- This is novel way to measure the bunch length without th e deflecting cavity even the accuracy is largely depend on the field of a cavity.
- I'm not sure this method is good or not because the fitted model was not given by the analytical model.
- > The work for analytical model of this method is going on.