ERL beam instrumentation

ERL beam instrumentation group

- T. Mitsuhashi
- S. Hiramatsu
- T. Kasuga
- T. Obina
- M. Tobiyama
- T. Naitoh
- T. Furukawa
- M. Satoh
- N. Nakamura

Developments of monitors Developments of control including fs technology

Beam instrumentation for the ELR

1. Profile measurement

Fluorescence screen

Optical profile monitor by OTR or SR Wire scanner SEM or Compton scattering High speed gated camera

- 2. Position measurement
 - **BPM** electronic

BPM SR or OTR

- 3. Intensity measurement DCCT, Differential DCCT Photocathode, Faraday cup SR or OTR intensity monitor
- 4. Emittance measurement Fluorescence screen with slit Wire scanner Interferometer SR or OTR

5. Temporal structure

Streak camera SR or OTR Incoherent intensity interferometer SR or OTR CSR interferometer CSR BLM opto-electric

6. Halo

Wire scanner

Coronagraph SR or OTR

7. Beam loss

ERL試験機のレイアウト

現在提案されている周回部のOptics案(原田)

全ての四極にはBPMをつ ける Arcの中心にはBPMがつ けられるか?

入射部および加速空洞直線部

入射部

蛍光板またはスリット付蛍光板(emittance 評価)
 BPMストリップライン
 ワイヤースキャナーまたはSEM

● BPM ● OTR,**蛍光板**

cavity BPM BLM (one pass, Opto-electric type)

• differential DCCT for current valance

Dump line

	Device		Accuracy	Resolution	Comment
Injector	BPM(strip line)	2			Position, timing
	Fluorescence screen	2			Position, profile
	Fluorescence screen (with slit)	2			Emittance
	Wire scanner SEM mode	1			Emittance, Halo
Merger	Fluorescence screen	4			Position, profile
Straight1 cavity	BPM	3			Position, timing, phase
	Fluorescence screen	3			Position, profile
	OTR	1			Position, profile
Arc1	BPM	8			Position, timing, phase
	BPMSR	1			Position
	Fluorescence screen	6			or OTR Position, profile
	SR	3			SRI, Streak camera Halo, profile

Straight 2	BPM	2	Position, timing, phase
	Cavity BPM	2	Accurate Position
	Test section		development
	BLM (Opto-electric)		Bunch length
Arc2	BPM	8	Position,timing, phase
	BPMSR	1	Position
	Fluorescence screen	6	or OTR Position, profile
	SR	3	SRI, Streak camera Halo, profile
Others	Differential DCCT	1	Current difference
	DCCT	1	DC current
	WCM	1	Bunch by bunch Current
Dump line	Fluorescence	4	Position, profile
	BPM	3	Position

Test facility for short pulse beam at PFBT

Development of beam monitors Development of fs technology

0.6ps to 4psec 60W (2.5GeV,1nc, 25pps)

Beam instrumentation based on Optical and opto-electric method

Incoherent SR intensity Interferometry for Short bunch mesurement

Bunch length measurement by intensity interferometry

Input fields for a beam splitter in intensity interferometry.

Let us represent the incident optical field by the complex field,

$$E_{A}(t) = C_{A}(t)A_{A}(t)$$
$$E_{B}(t) = C_{B}(t)A_{B}(t) . \quad -(3)$$

Here C(t) is the pulse envelope having a pulse width (bunch length) σ_{p} , and A(t) is a stationary random variable having coherence time τ_{c} .

We assume the correlation function of A(t) and C(t) have Gaussian shape. We also assume that E_A and E_B of two photons have no first order coherence. We thus obtain from Eq. (2), remormalizing the proportional constant K,

Count₁₂(
$$\delta \tau$$
) = K $\sigma_p^2 \left(1 + \frac{\tau^*}{\sigma_p} \left[1 - \frac{1}{2} \exp\left(-\frac{\delta \tau^2}{4\sigma_p^2} \right) \right] \right),$
$$\frac{1}{\tau^*} = \frac{1}{\sigma_p^2} + \frac{1}{\tau_c^2}.$$

Let us represent the incident optical field by the complex field,

$$E_{A}(t) = C_{A}(t)A_{A}(t)$$
$$E_{B}(t) = C_{B}(t)A_{B}(t).$$

Here C(t) is the pulse envelope having a pulse width (bunch length) σ_{p} , and A(t) is a stationary random variable having coherence time τ_{c} .

We assume the correlation function of A(t) and C(t) have Gaussian shape.

We thus obtain coincidence count;

$$\operatorname{count}_{12}(\delta\tau) = \operatorname{K}\sigma_{p}^{2} \left[1 - \frac{1}{2} \exp\left(-\frac{\delta\tau^{2}}{4\tau_{c}^{2}}\right) + \frac{\tau^{*}}{\sigma_{p}} \left(1 - \frac{1}{2} \exp\left(-\frac{\delta\tau^{2}}{4\sigma_{p}^{2}}\right)\right) \right]$$
$$\frac{1}{\tau^{*2}} = \frac{1}{\sigma_{p}^{2}} + \frac{1}{\tau_{c}^{2}} .$$

Illustration of intensity interference pattern with coherent light pulse.

Phase correlation peak in the center.

Illustration of intensity interference pattern with chaotic light pulse.

Experimental setup of the intensity interferometer

(a) Set up of first-stage system to produce an incidence beam for the interferometer

Corner-Cube Displacement (mm)

Pulse envelope length σ_p is always longer than Coherent length of wave pockets τ_c .

 $\sigma_{p} \!\geq\! \tau_{c}$

We can measure the very short pulse length with intensity interferometry with nearly no theoretical limit on temporal resolution.

Actual resolution will be limited by dispersion of the glass.

Coronagraph for halo measurement

Optical layout of the coronagraph

Beam tail images in the single bunch operation at the KEK PF measured at different current

45.5mA

35.5mA

396.8mA Multi-bunch bunch current 1.42mA

Observation for the more out side

Intensity in here : 2.05x10⁻⁴ of peak intensity

2.55x10⁻⁶

Background leavel : about 6x10⁻⁷ Bunch length monitoring by Opto-electric method

Electro-Optical Sampling

TTF2: Methods 1&2 installed at 140 m, method 3 will be used at 190 m

Electro-Optical Sampling

Adrian Cavalieri et al., U. Mich. Courtesy of J. Hastings

Single-Shot

Timing Jitter

(20 Shots)