UVSOR-IIのコヒーレント テラヘルツ光計測

UVSOR 島田 美帆

Coworkers

M. Katoh, A. Mochihashi, S. Kimura (UVSOR), Y. Takashima, M Hosaka (Nagoya U.), T. Takahashi (Kyoto U.), M. E. Couprie, M. Labat, G. Lambert (CEA), S. Bielawski, C. Szwaj (U. Sci. Tech. Lille)

supported by Grant-in-aid for scientific research of JSPS and by International Collaboration Program of IMS.

The design of the second secon

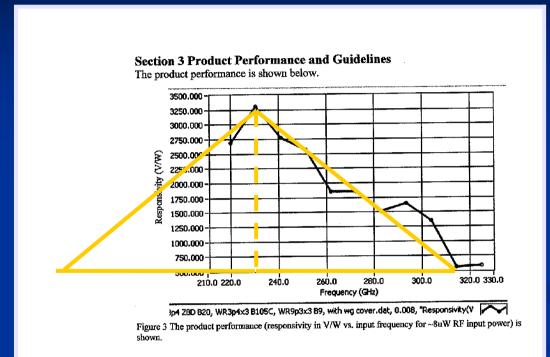
UVSOR FACILITY

現在UVSORではテラヘルツ光源としての新しい分野を開くため、

- 不安定性によるミクロ構造による CSRのバースト
- レーザーバンチスライスによるテラ ヘルツ光の発生

の研究に力を入れています。

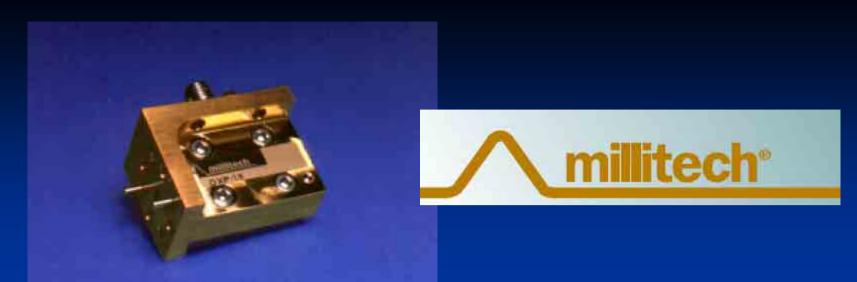
InSb Hot Electron Bolometer

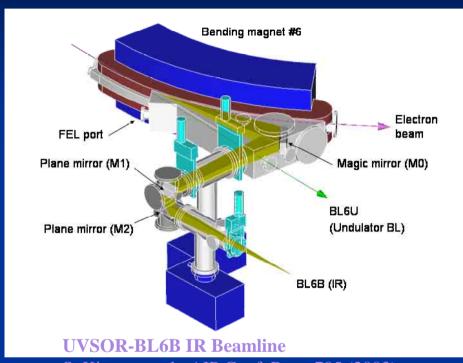


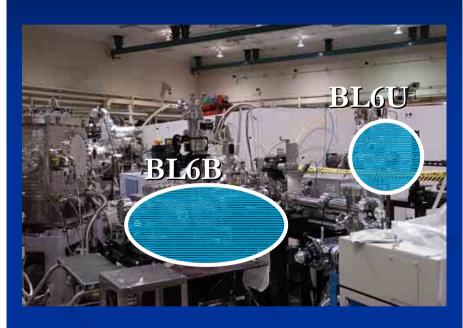
■ 時間分解能 ~およそ1.6µsec (実測値: UVSORリング数 周相当)

- 波長域 3 cm⁻¹ ~ 50 cm⁻¹
- 比較的感度が高い
- 液体ヘリウムで4.2Kまで冷却が 必要

QMC Instruments Ltd


VDI THz Detector (半導体検出器)

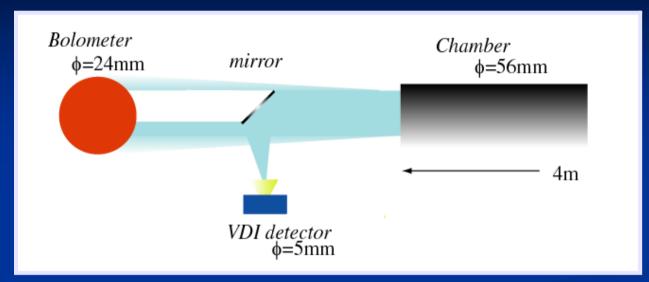

- ■波長域
 - 230GHzを中心に、150GHz(5.0cm⁻¹)⇔310GHz(10.33cm⁻¹)
- 灰色の箱は静電気などによる故障を防ぐためのもの
- 時間分解能 : 数10~100 psec程度 (VDI資料より)
- J-Lab, SCSSやNewSUBARUでも使用。



ELECTRICAL SPECIFICATIONS										
Model Number	DXP-42	DXP-28	DXP-22	DXP-19	DXP-15	DXP-12	DXP-10	DXP-08	DXP-06	DXP-05
Frequency band and range, GHz	K	Ka	Q	U	V	E	W	F	D	G
Typical video sensitivity, mV/mW										
at -20 dBm input	5000	4000	2000	1800	1500	1250	1100	1000	800	600
Minimum video sensitivity, mV/mW	2500	1500	1200	1000	850	700	600	300	400	300
Typical Flatness, dB	±1.5	±1.5	±1.5	±1.5	±1.5	±2.0	±2.5	±3.0	±3.0	±3.0
Typical TSS at 1 kHz (bw 40 Hz), dBm①	-55	-55	-50	-50	-50	-45	-45	-40	-40	-40
Typical video bandwidth, MHz@	10	10	10	10	10	10	10	10	10	10
Video output load, megaohm	1	1	1	1	1	1	1	1	1	1
Incident RF power, dBm (cw max)	+20	+20	+20	+20	+20	+20	+20	+20	+20	+20

- 様々な波長領域の検出器が揃っている。
- 比較的、安価である。

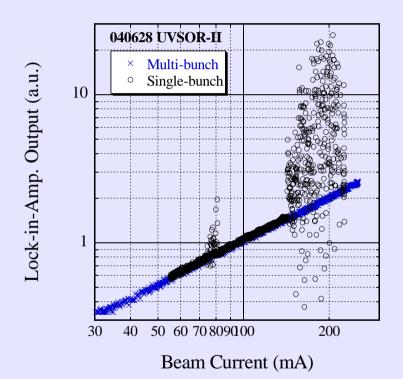
検出ポート

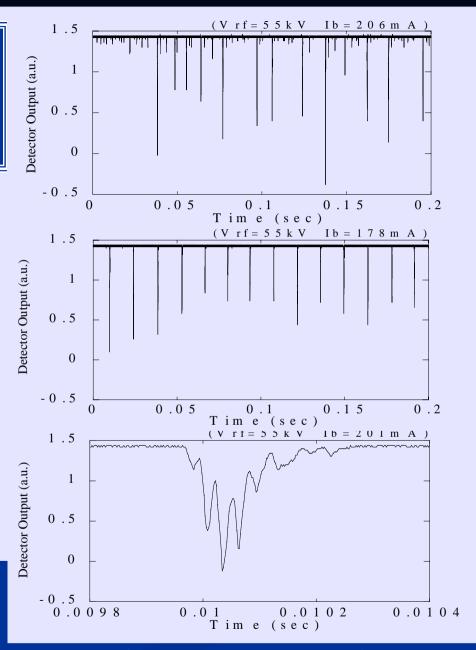


S. Kimura et al., AIP Conf. Proc. 705 (2003)

- BL6B $215 \times 80 \text{ mrad}^2$
- BL6U $7 \times 7 \text{ mrad}^2$
- BL6B**の方が検出面が大きいが調整が必要なため、**BL6Uで **測定**。

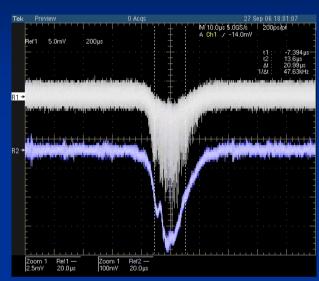
測定系

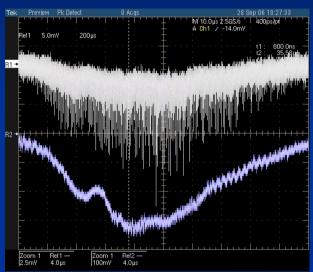


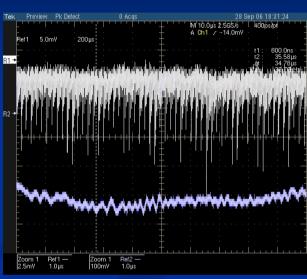

■ ボロメーターとVDIテラヘルツ検出器で同時に計測

Observation of Terahertz Bursts

Y. Takashima et al. JJAP 44(35), 2005, 1131



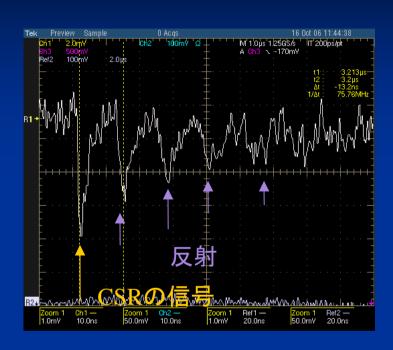

Burst: 高い電流・シングルバンチ で発生するCSR



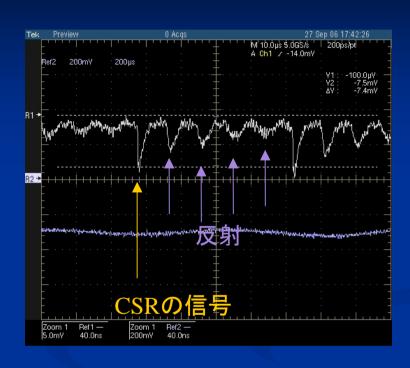
Peak Intensity ~10000 × normal SR

BolometerとVDIテラヘルツ検出器によるBurstの計測

Scale 20µsec


Scale 4µsec

Scale 1µsec


▶ 拡大

- VDIではbolometerよりも時間 分解能が高く、CSRを周回毎 のスパイクとして観測できる。
- 青 : Bolometer
- 白 : VDI THz検出器

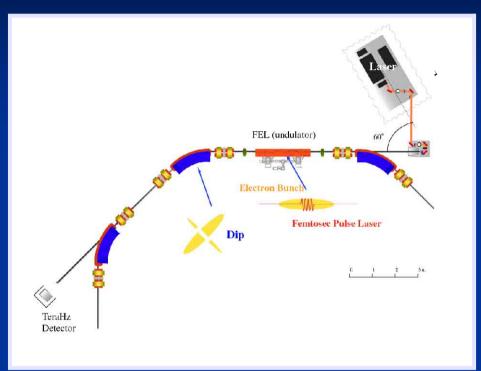
VDIテラヘルツ検出器の時間分解能I

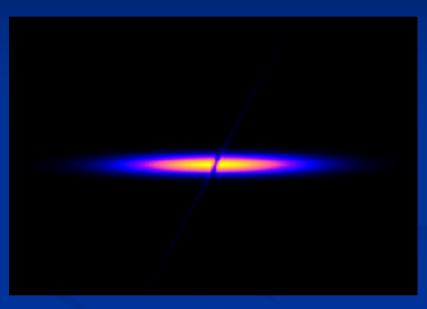
■ ケーブル1m ・・・ ピーク間 13 nsec ±0.8 nsec

■ ケーブル 3m <u>・・・ピーク間</u> 34 nsec

VDIテラヘルツ検出器の時間分解能II

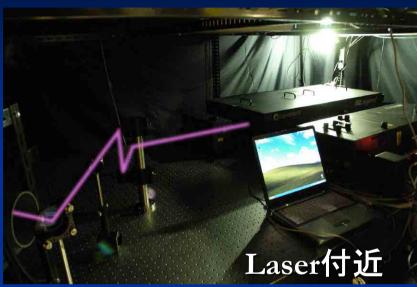
- ケーブルの長さ1m
 - ••• 応答時間 **3.2**nsec
- 時間応答が悪化した原因として、
 - ケーブル
 - 静電気防止の灰色の箱
 - VDIとChamber間(~50cm)の多重反射。

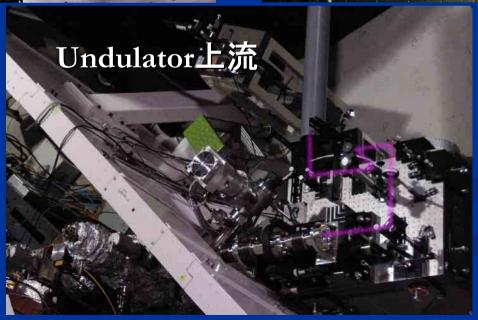

が挙げられる

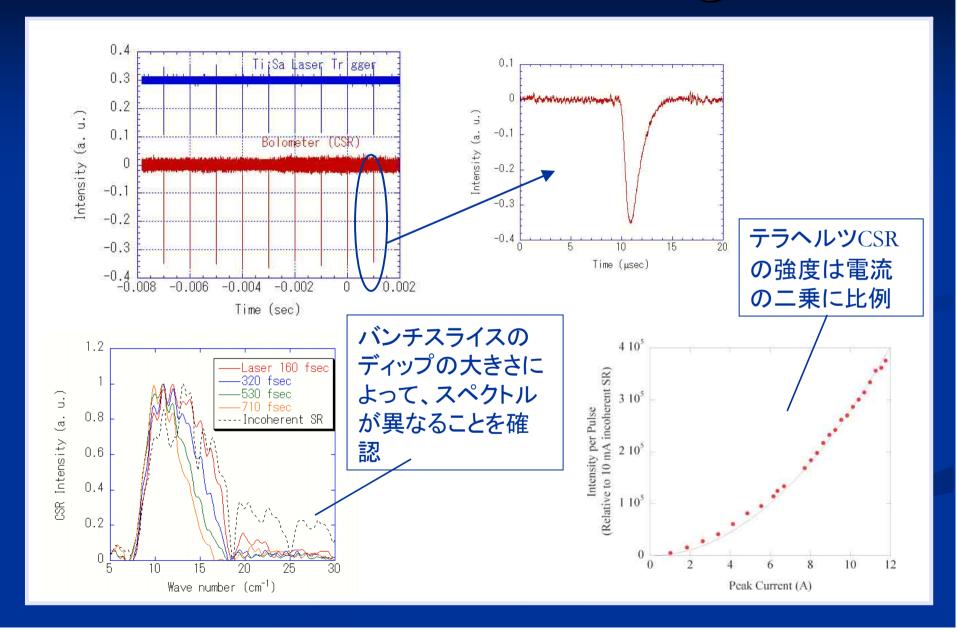


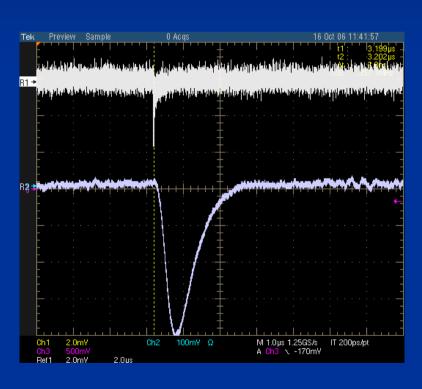
- ケーブルの長さ3m
 - ••• 応答時間 **6.8**nsec

Laser Bunch Slicing

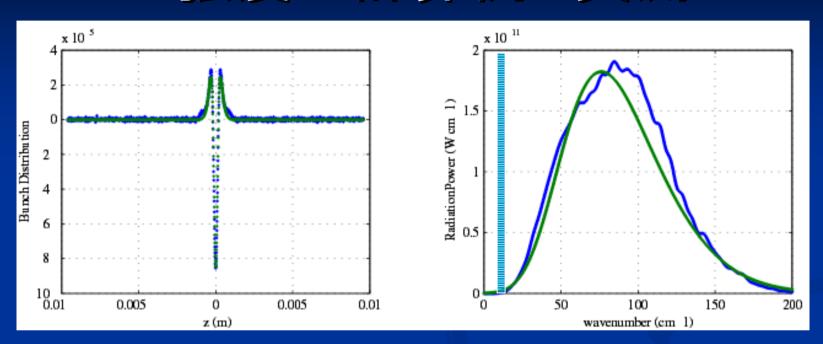

- フェムト秒のパルスを電子ビームに照射し、バンチに縦方向をディップを作る。
- そのディップの長さに相当するCSR(テラヘルツ域)が観測される。


Photograph I


Photograph II



Laser Bunch Slicing


Laser Bunch SlicingのBolometerと VDIテラヘルツ検出器の出力比較

特徵

- 上: VDI テラヘルツ検出器
 - ■速い応答時間
- 下:ボロメーター
 - 高感度、高いS/N比

THz強度の計算例と実測

- 計算上ではVDI検出器の波長域(右側グラフ・水色の部分) より短い波長のCSRが強い。
 - 電流 30mA
 - VDI予想出力 0.9mV ~ 8.9mV
 - VDI出力 3.636±0.16mV

ERL TEST FACILITYにおける テラヘルツ光を用いたビーム診断について

- ■テラヘルツ計測の特徴
 - 大掛かりな光学系を必要としない。(窓材はコルツ、 ミラーも特殊なものではない)
 - ■リアルタイムでバンチ長に関する情報を得られ、 ERL試験機で予定されているサブピコ秒オーダー の電子パルス長の計測に適している。
- もし事前に検出器のテストなどをやりたければUVSORへおいでください。