cERLでのLCS X線を用いた イメージング実験

第2回コンパクトERLミニワークショップ

KEK 2015年7月30日(木)

小菅 淳 高エネルギー加速器研究機構

目的

cERLでの20 MeV電子とCavity内に蓄積された光子による レーザー・コンプトン散乱(LCS)により約7 keVのX線を発生させ、 X線イメージング測定をおこなう。

Parameters of electron and laser beams

Intracavity Laser beam	
Center wavelength [nm]	1064
Pulse energy [µJ]	39
(Average power [kW])	6.3
Pulse duration [ps, rms]	5.65
Spot size [µm,rms]	30
Collision angle [deg.]	18
Repetition rate [MHz]	162.5
Electron beam	
Energy [Mev]	20
Bunch charge [pC]	0.46 (75. μA)
Bunch length [ps, rms]	2
Spot size [µm, rms]	30
Emittance [mm mrad, rms]	0.4
Repetition Rate [MHz]	162.5

共振器の共振ピーク

4月、6月の実験ではCavity lockの安定性を考え、一番高いピークでlockすることをおこなわなかった。

今後は一番高いピークでのCavity lockを目指す。

cERLでのイメージング実験

イメージング実験時のbeam current

•2015/04/03

•2015/06/25

cERLでのLCS X線イメージング実験結果 (2015/04/03)

とうがらし、桜、基板、スズメバチのイメージングをおこなった。 検出器は、リガク社製 HyPix-3000を使用。(1pixel = 100µm x 100µm) •とうがらし

Background

測定時間: 900sec 0.145 photons/sec/pixel

視野がBe窓の大きさで 制限されている

100

200

300

Measurement time[sec]

400

500

600sec

測定時間: 600sec 0.471 photons/sec/pixel

•スズメバチ

測定時間: 620sec 0.399 photons/sec/pixel

> チューブ内のHe量が減少してる →透過率が下がり光量が減少している

cERLでのLCS X線イメージング実験結果

4/3の測定ではBe窓によりイメージング像の視野が制限されている。 6/25日の実験にむけてBe窓の交換をおこなった。

前回のスズメバチのイメージング像

交換したBe窓

cERLでのLCS X線イメージング実験結果 2015/06/25 スズメバチの接写イメージング スズメバチの接写屈折コントラストイメージング

sc/100 μm 0.2

0.20

0 16

0.00

hornet

400 450

測定時間: 1330秒 = 約22分 Max. 0.2 photons/sec/pixel Ave. 0.08 photons/sec/pixel (lockが不安定ためAve.が低い)

150 200 250 300 350 Elapsed time[sec] 50 100 0 測定時間: 480秒 = 8分 Max. 0.16 photons/sec/pixel Ave. 0.11 photons/sec/pixel

Distance[mm]²⁴

検出器にピクセルサイズに依存した空間分解能

0

4

8

12

で測定できている。(200 mm程度)

28

32

36

測定時間: 770秒 = 約13分 Max. 0.2 photons/sec/pixel Ave. 0.08 photons/sec/pixel

Absorption Edge Imagingに向けたLCS X線 エネルギーの可変性の観測

散乱光子のエネルギーと散乱角度に相関がある

cERLでのLCS実験で期待される散乱光子 エネルギー

- •電子エネルギー: 20 MeV
- ・レーザー波長: 1064 nm (1.17 eV)
- •衝突角: 18 deg.

電子のエネルギーを上げることでLCS X線の エネルギーを上げることができる。

今後、物質の吸収端前後でイメージング測定をおこなう予定。

LCS X線エネルギーの可変性の測定結果

電子のエネルギーの上限(21.0 MeV)は、cERLの主 空洞He 圧力で制限されている。

連続的にエネルギーを変えることはできなかったが、 エネルギーを21.0 MeVまであげてCW運転を行い、 LCS X線エネルギー測定を行った。 その結果、Feの吸収端をまたいで6.97 keVから7.68 keVまでLCS X線を発生させることに成功した。

今後、LCS X線を用いてX線偏光コントラストイメージングができるか確認したい。 (LCSの利点である偏光切り替えを活かすことができる。)

まとめ

cERLでのLCS X線を用いて初めてイメージング実験をおこなった。

イメージング実験では、 スズメバチ、とうがらし、さくら、テストチャートなど様々なサンプルのイメージング 測定に成功した。

また、cERLの電子のエネルギーを変化させたときのLCS X線スペクトルを測定し、LCS X線のエネルギーが可変であることを確認した。

今後は、

•LCS X線の光量を上げるため共振器内の蓄積パワーの増大を目指す。

➡ Cavity lockの精度を上げる。(共振器の最適化)

➡より高い蓄積パワーの条件で共振器をlockする。

•X線検出部のHe濃度を上げ、透過率が下がらないようにする。 •FeやCoなどの吸収端付近でのイメージングをおこない、X線偏光コントラストイ メージングをおこないたい。