

高エネルギー加速器研究機構

野澤俊介

Compact ERL A test facility of 3GeV ERL

本機3GeVERL型放射光源
において必要な加速技術
の実証を行う

cERLにおけるスケジュール

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
R&D of ERL key elements												
	Prep of ERL Test Facility CERL construction		Beam test and test experiments									
					Hard	X-ray	, THz e	experii	nents			
			γ -ray	experi	ment							
			MEXT 2011-2		2013							

■ ビーム運転に伴いcERLから得られる光をユーザー利用実験用の提供

- 2013年度より硬X線とテラヘルツ光の先端的な利用研究を想定して 各々のビームライン建設が開始される予定
- 2011-2013年レーザーコンプトンγ線を用いた核共鳴蛍光散乱実験(JAEA)

レーザーコンプトンX線ビームライン

<u>共振器によるLCSを用いた高flux光源</u> ■ 広視野と共振器による高fluxイメージング

<u>90度衝突LCS散乱を利用したフェムト秒光源</u> ■ 100fs準単色光を用いた時間分解X線実験

テラヘルツ光ビームライン

<u>CSRを用いた高強度コヒーレントTHz光源</u>
■meV領域における電子状態変化の観測
■コヒーレント性を利用したイメージング
■フォノン励起用フェムト秒光源

テラヘルツ光ビームライン

■ CSRを用いた高強度コヒーレントTHz光源

THz beamline

S. Kimura, J. Vac. Soc. Jpn., **53** (2010) 399-405

Light source	Band width	Pulse width	Frequency	Averaged power	Pulse energy	Electric field at peak
Table-top lasers	5 THz	100 fs	1 kHz	nW to uW	nJ to uJ	10 kV/cm
cERL(13mA)	5 THz	100 fs	260 MHz	1 kW	10 uJ	1 MV/cm

THzビームライン概要

カテゴリー	品目
MO	マジックミラー
M1,M3,M4,M5	平面鏡一式
M2	放物面鏡
M0,M1調整機構	真空ステージー
M0,M1,偏向電磁石用チャンバー	真空チャンバー
F1より下流	光学系調整,真空槽,ポンプ,真空ゲージ, バルブ等
FT-IR, Bolometer(Si, MCT)	Bruker VERTEX70V, 30-15000cm-1, dE=0.16cm-1
試料槽	クライオスタット・真空ポンプ・真空ゲージ

Science cases (THz)

Schematic view of intersection of CMOS

レーザーコンプトン散乱(LCS) X線ビームライン

■ High-flux mode 共振器によるLCSを用いた高flux光源

Ultrafast mode
90度衝突LCS散乱を利用したフェムト秒光源

X-ray beamline – High-flux mode

X-ray beamline – Ultrafast mode

Laser pump - X-ray probe fs time resolved X-ray measurement

Direct structural visualization of photoreaction intermediate by WAXS with 100 fs quasi-monochromatic X-Ray

<u>Photoisomerization reaction in stilbene</u>(cis \Rightarrow trans :< 1ps)

Observation of the structural change as fs molecular movie

レーザーコンプトンX線のエネルギー

0 deg. : ~ High Flux mode 90 deg. : Ultrafast mode

X線ビームライン(High flux-, Ultrafast-mode)概要

12W, fs-laser

カテゴリー	品名
レーザー	励起用レーザー1式
共振器	光共振器 130MHz
フロントエンド	バルブ,マスク,MBS,Be
ミラー	集光ミラー調整機構
	集光ミラー
真空槽	ポンプ、ゲージ、バルブ、真空槽、Be
インターロック	インターロックシステムー式
ユーティリティー	電気、冷却水、圧空一式
実験装置	2次元検出器
	回折計

まとめ

- cERLにおける利用研究を目指し、CSRによるTHz光ビームライン、LCSによるX線ビームラインを建設する
- CSRによって発生する大強度THz光により、分光学的手法、 THzコヒーレントイメージングを使った分光学的物性研究や、 プロセス技術への応用研究、等が期待される。
- 光共振器を用いたLCSによって発生するX線は、微小光源、 高Flux、広視野という特徴を持ちX線イメージング等への利用 が期待される
- 90度衝突LCSによって発生する超短パルスX線は、パルス幅 100fs、ジッターフリーという特徴を持ち、超高速ダイナミクス 研究への利用が期待される。