第2回 コンパクト ERL サイエンスワークショップ

cERLによる強レーザー場中の 分子挙動の研究

光電離の立体ダイナミクスの解明

- 4 重コインシデンス [e⁻ + frag⁺₁ + frag⁺₂ + frag⁺₃]:
 信号強度非常に弱い
- レーザーによる配向/援用
- レーザーポンプ-ERL プローブ
 - 非 Franck-Condon 領域・振動波束の生成

空間配向分子の光電離

- 夢:分子をある配向で静止
 基板に固定して観測 ← 満足できない
 量子力学的純粋状態の観測ではない
- "選択"または"制御","制御 & 選択"
 選択 ⇐ 内殻過程の特徴 + コインシデンス法
- 分子の空間配向の制御・選択 + ERL
 DC 電場・AC 電場による制御・選択
 レーザー場による制御
 - ERL の短パルス性 (≈ 0.1 ps)

強レーザー場中の原子・分子・クラスター

- 新奇な対象: 強レーザー場中にある原子分子
- 中程度のパワー密度: 10¹¹-10¹² W cm⁻²
 - 分子の配列あるいは変形
 - Coulomb 爆発が起こる領域よりも低いパワー密度

K. Yamanouchi, Science 295, 1659 (2002).

レーザー場による分子配向

- 3 つのタイプに分類できる
 - H. Stapelfeldt and T. Seideman, *Rev. Mod. Phys.* **75**, 543 (2003).
 - 断熱的配向 $\tau \gg \tau_{rot}$
 - 非断熱的配向 $\tau \ll \tau_{rot}$
 - 急激遮断 $\tau_{on} > \tau_{rot}, \tau_{off} \ll \tau_{rot}$
- 断熱的配向
 - –時間同期はすでに実現できている
 –完全な自由場での実験にはならない
- 非断熱的配向

- プローブも短パルスである必要性

電子線回折による高速現象の解明の例

気相分子の光電子回折パターン測定

- 電子線回折よりも局所的な情報が得られる可能性
- 一般的な光電子回折パターン
 - 前方散乱方向への強度の集中
 - 解析の手法が確立されている?
- 低速光電子回折 (KE ≤ 250 eV)
 - 後方散乱方向での強度の大きな変動 ⇒ EXAFS 変動
 - 化学シフトの大きさの違いによるサイト選択性
 - 振動準位分離

第一歩:レーザー配列した分子の アンジュレータ光 によるプローブ

強レーザー場中 CS₂ 分子

- 強レーザー場中での分子
 - 分子の断熱的配向
 - 分子のドレスト状態における構造変形
 - 参考文献
 - H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
 - 星名賢之助ら, J. Chem. Phys. 118, 6211 (2003).

- これまでのところ有効なデータは得られていない

SRとNd:YAGレーザーの組合せ

特性

- UR @ BL2C PF
 - 250~1400 eV
 - 1.6 MHz (シングルバンチ時)
 - ~ 10¹⁰ photons/s/0.02%BW
 (~ 5 × 10³ ph/pulse/0.02%BW)
 - パルス幅 100 ps のオーダー
- パルス Nd:YAG レーザー
 - 1064 nm (fundamental)
 - 1 J/p × 30 Hz (保有機器)
 - パルス幅 7-10 ns

レーザーとの比較

- 放射光の利点:
 - <u>高い波長掃引性</u>
 - 高いエネルギー
 - 真空紫外領域以上
 - 荷電粒子生成
- 放射光の欠点
 - <u>光子数/パルスが少ない</u>
 - <u>非常に低いコヒーレント性</u>
 - 光の操作はすべて真空中
 - (他光源との同期は困難)

強レーザー場中分子の分光計測

- 寺本高啓ら, AIP Conf. Proc. 879, 1805 (2007). "SRI2006"
- ナノ秒パルスNd:YAGレーザー: 0.4~0.5 TW/cm²
 - 1064 nm, パルス幅 ~8 ns, 0.8~1 J/pulse × 30 Hz
 - ビーム広がり < 0.5 mrad / 2 (エクスパンダー), f = 750 mm \rightarrow 125 μ m
- PF BL2C
 - 0次光(アンジュレータから光を分光せずに使用)
 - 四象限スリットにてスポットサイズを限定

有効なデータが得られていない要因

- 重ね合わせの精度が不充分であった
 現在は1点での位置合わせは改善されてきている
- レーザーの集光サイズよりも放射光のほうが大きい
 観測されているイベントは強レーザー場の外からの寄与
 - 四象限スリットがレーザーにより破損
- CS₂分子由来のイベントが少ない
 - 50000 cps 以上は処理し切れていない?
 - 冷却により分圧が低くなりすぎた
 - 0次光のすそのエネルギー成分は不明確

現状より高度な実験に向けて

- スポットサイズの適合性
 - 現状では
 - SR: $\geq 100 \ \mu m$
 - レーザー: 焦点距離に依存
 - SR スポットをより絞る必要
- パルス幅の適合性
 - 強いピークパワーのレーザー
 - Nd:YAG: 10 ns
 - Ti:Sapphire: 1ps–10fs
 - パルス幅の伸長が必要?
 - SR
 - 現世代リング~100 ps
 - 次世代技術が必要

60-200 MeV ERL における CSR-ICS

TABLE I: Optical cavity scheme in the Compact ERL : Horizontal acceptance angle are 50 mrad for $\lambda = 190 \ \mu m$ and 110 mrad for $\lambda = 1900 \ \mu m$ for mode matching. Bandwidth of the on-axis X-ray is considered to be $\Delta \lambda_X / \lambda_X \sim \Delta \lambda / \lambda \sim 0.1$ (10%). Pulse duration of the X-ray is same as σ_z/c .

Electron	Charge	σ_z/c	Spot size	CSR	Κ	X-ray	N_X	N_X
energy $[MeV]$	[nC]	[ps]	$[\mathrm{mm} imes \mathrm{mm}]$	energy [mJ]		energy $[keV]$	[phs./pulse]	[phs./s]
60	0.077	0.1	0.3 imes 0.3	0.14	0.013	0.4	$1 imes 10^4$	2×10^{13}
60	0.5	1	3×3	0.6	0.009	0.04	4×10^4	$0.7 imes10^{13}$
200	0.2	0.1	0.3 imes 0.3	1.0	0.034	4	$2 imes 10^5$	$1 imes 10^{14}$
200	1	1	3×3	2.5	0.017	0.4	$3 imes 10^5$	$3 imes 10^{13}$

- Number of photons of X-ray (b.w.10%)
 - Number of photons per pulse : ~ 10⁴⁻⁵ phs/pulse.
 - Flux : ~ 10¹³⁻¹⁴ phs/s.
- Energy range of X-ray
 - From **0.04 to 4 keV**.
 - 10 keV X-ray is possible at electron energy of 200 MeV and bunch length 50 fs, which is accomplished in tracking simulation.
- Pulse duration of X-ray is **100 fs 1 ps**.
- Electron transverse beam size is much smaller than the focus size of focused CSR.

Ref. 島田美帆 博士 発表資料より

測定スキーム1 強レーザー場中にある直線分子の変形

- 内殻光電子回折パターン ⇒ 構造変形
- 断熱的配向 + 非断熱結合

測定スキーム 2 非断熱的レーザー配列・配向させた分子からの 光電子角度分布測定

- 非共鳴過程による分子配列
 - 非断熱過程 (sub ps)
 - 高強度フェムト秒レーザー
 - 断熱-非断熱中間領域
 - 高強度フェムト秒レーザー + パルス伸長
- "着衣"分子についての新しい情報が得られる可能性?
- 非解離性電離過程についての MFPAD 測定に適用?

まとめ

- 時間コヒーレント性なしでは本質的に異なる研究は困難
- ・ 強レーザー場中原子分子の挙動・電子的構造
 - 試みの実験からは有効なデータが得られてない
 - ナノ秒パルスレーザー場 + 100 ps SR プローブ
- CSR-ICS による軟 X 線は利用可能
 - 10%BW でも pulse あたりはアンジュレータ光と同程度
 - 光学レーザーのより早い繰返しが必要
 - 新しい情報を得るためには異なる測定スキーム
- ERL実機で時間分解光電子回折実験を展開

謝辞:これまでの実験・計算

- 実験
 - 柳下明教授
 - 山内薫教授
 - 寺本高啓博士
- 実験アドバイス

 酒井広文 准教授
 峰本紳一郎 博士
 - 岩崎純史博士

- 散乱理論計算
 - 藤川高志 教授
 - 篠塚寛志博士
 - 風間美里氏
- 研究助成

 松尾学術振興財団
 - 科研費
 - 特定領域研究 "強光子場分子制御"

• PFスタッフの皆様

この他多くの方々の協力により 研究を進めることができました ありがとうございました