

THz光を用いた分光研究と cERLへの期待

Shin-ichi KIMURA

UVSOR Facility, Institute for Molecular Science, and School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan

Acknowledgments

M. Katoh, M. Adachi, H. Zen, M. Shimada, Y. Taira, K. Imura @ UVSOR Facility

M. Hosaka, N. Yamamoto,

Y. Takashima

@ Nagoya University

T. Takahashi @ Kyoto University

C. Evain, C. Szwaj, S. Bielawski,

T. Tanikawa

@ Université des Sciences et Technologies de Lille, FRANCE

P. Probst, A. Scheuring, K. Il'in, S. Wünsch, M. Siegel @ KIT, GERMANY

Financial support

Quantum Beam Technology Program (FY2008-2012) of MEXT, Japan.

Quantum Beam Technology Program

Outline

- IR/THz Synchrotron Radiation to Coherent Synchrotron Radiation (CSR)
 - What's THz?
 - IR/THz-SR
 - Present status of THz-CSR at UVSOR-III
- CSR from cERL
 - Expected average/peak intensity
 - Proposal scientific program
 - Other intense THz source project in the world
- Conclusion

BL6B (IR)

Magic mirror

What's coherent synchrotron radiation (CSR) ?

THz CSR via Laser Bunch Slicing at UVSOR-II

BL6B @ UVSOR-III The highest-flux IR/THz BL

[SK et al., Infrared Phys. Tech. **49**, 147 (2006).]

3-dimensional magic mirror

[SK et al., NIMA 467-468, 437-440 (2001).]

Combination of THz-CSR and Coherent Harmonic Generation (CHG) in the VUV region

THz pump–PES probe (TP³S) beamline at UVSOR-III

Photon flux and peak power of THz-CSR

(Calculated by M. Hosaka)

Previous THz/IR pump experiments

THz-pump – THz-TDS probe

THz-induced Josephson plasma of LSCO

[D. Fausti et al., Science 331, 189 (2011).]

THz-pump – transport probe

THz-induced MIT of Pr_{0.7}Ca_{0.3}MnO₃

First beam injection: 4th Quarter 2013 First light: in 2014 (?)

By M. Shimada

horizontal acceptance		300mrad				
current		10	mA			
	electron	electron		CSR pulse	CSR pulse	
	energy	charge	bunch	energy	peak power	CSR average
	[MeV]	[pC]	length [ps]	[J/pulse]	[W]	power [W]
case 1	60	77	0.1	5.89E-06	2.50E+07	7.65E+02
case 2	60	500	1	1.12E-05	4.74E+06	2.24E+02
case 3	200	200	0.1	4.00E-05	1.70E+08	2.00E+03
case 4	200	1000	1		1 00E±07	

CSR @ J-lab. ERL

[Nature **420**, 153 (2002).]

High-power terahertz radiation from relativistic electrons

G. L. Carr*, Michael C. Martin†, Wayne R. McKinney†, K. Jordan‡, George R. Neil‡ & G. P. Williams‡

* National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA † Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ‡ Free Electron Laser Facility, Jefferson Laboratory, 12000 Jeffers

Newport News, Virginia 23606, USA

Jefferson Lab 🤊

104 Power (W/cm⁻¹) in 100x100mrad² Output power (mW) 1,000 100 10 Shin-ichi KIMURA [kimura@ims.ac.jp] UVSOR Facility, Institute for Molecular Science, JAPAN 0.1 0.01 0.001 0.01 S

Expected scientific programs

THz pump- ??? probe (QP, Phonon,,,)

- LCS X/SX probe
 - Diffraction
 - XANES/DXAFS
 - Imaging
 - (AR)PES
- THz-TDS probe
 - Absorption/reflection
- Laser probe
 - Absorption/reflection
 - ARPES
- + Laser pump + LCS X probe (by Nakamura)

THz-probe

- SNOM
- Wide region imaging
- Combination with xray imaging (absorption, phase contrast)

Shin-ichi KIMURA [kimura@ims.ac.jp] UVSOR Facility, Institute for Molecular Science, JAPAN

Other CSR source projects

Conclusion

IR/THz-SR and THz-CSR activities at UVSOR-III, and expected intense THz from cERL are introduced.

- THz-CSR from cERL can bridge the THz gap.
- THz-pump PES-probe spectroscopy (TP³S) was desired at UVSOR-III.
 - The beamline was constructed and the test experiment will be performed.
- New experiments can be desired using cERL.

