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Fi :gure 3 rﬂae terahertz moia; extinctions of soivatcd lysozyme (akmg
with its hydration shell) provide a measure of its low-frequency
vibrational dvnamics. Above ~0.2 THz, we observe a broad spectrum
with an initial fast rise in absorption, and a high-frequency platean/
saturation above ~2 THz.
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Figurc 4 We see ng evzdence of Vlbfd(i(}ﬁa] dynamscs bei()w ~{).2
THz in solvated lysozyme. Instead, we observe a critical on-set of
extinction between 0.2 and 0.3 THz This low-frequency cutoff may
simply arise from the finite size of the protemn.

Xu, Plaxco & Allen (2006) J. Phys. Chem. B, 110, 24255-

24259.
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Figure 5. (Top) The absolute teraherz spectra of solvated lysozyme
(O) and BSA? (@) differ significantly. For example, the monotonic
increase in extinction observed for BSA tapers off and saturates above
~2 THz for lysozyme. (Bottom) The apparent greater overall absorption

of the BSA is largely mitigated by normalizing the spectra by the
number of amino acid residue.



Fig. 4 Lysozyme (0.2 mm - 0.1 mm by smoothed data)
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Fig. 4 Myoglobin (0.2 mm - 0.1 mm by smoothed data)
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Fig. 4 BLG (0.2 mm - 0.1 mm by smoothed data)
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Fig. 4 a-synuclein (0.2 mm - 0.1 mm by smoothed data)
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Fig. 3 src SH3 (0.2 mm - 0.1 mm by smoothed data)
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An extended dynamical hydration shell around
proteins ) *5-85

Simon Ebbinghaus, Seung Joong Kim, Matthias Heyden,
Xin Yu, Udo Heugen, Martin Gruebele, David M. Leitner,
and Martina Havenith

PNAS December 26, 2007 vol. 104 no. 52 20749-
20752

I(d) =1, exp(-a d) + C, with |,, a, d, and C corresponding to the
intensity before the probe, the absorption coefficient of the
probe, the layer thickness of the probe, and the detector offset,
respectively.
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Fig. 1. Difference in the THz absorption coefficient at 2.25 THz relative to bulk water plotted
against concentration to 3 mM at 15° C,20° C, and 22° C. The absorbance depends
nonlinearly on concentration in this region. Note that the THz absorption for bulk water (zero
point) increases with increasing temperature. (Inset) The frequency dependence of the
absorption coefficient is linear between 2.25 and 2.55 THz (22° C: comparison of buffer and
at a protein concentration of 860 M).
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stopped-flow apparatus
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figure 3

CD amplitude is indep. of T or EGOH
concentration.

Ub is already compact after the
burst phase.

Qin et al. (2002) JPC
Larios et al. (2004) JMB



src SH3 domain

The SH3-fold consists of
two small orthogonal
three stranded [-sheets
with an associated
irregular two-stranded
sheet packing against each
other in a sandwich form.

distal loop

30helix  N-srcloop

PDB ID: 1SRL
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CD(222 nm) -SF monitored refolding of
src SH3 at pH 3.0.
GuHCl jump from 5.0t0 0.71 M
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Fluorescence —monitored folding
of src SH3 at pH3.0, 4 C
Excitation at 295 nm.
Fluorescence above 325 nm was
collected.
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Chevron plot of SH3 folding
rate observed by fluorescence
at 4 °C in 50mM PBS, pH 3.0




X-ray Scattering Study
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At which step does hydration occur?

= Native
———— structure

Unfolded

state ——  Native

—~—— structure

o — helices formation o — helical
in equilibrium core formation

Figure 4. A proposed scheme of the initial events of protein folding, suggesting
the importance of a-helical core formation in case of 3-rich proteins as well as
o-helical rich proteins. (Qin et al. (2001) FEBS)



Fig.7 structure I (a) ribbon model

(b) all atom model

T Fig.8 SAXS intensity
Blue: Experimentally obtained
SAXS intensity of the intermediate
Red: Calculated SAXS intensity
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Real-Time Detection of Protein—Water Dynamics upon
Protein Folding by Terahertz Absorption Spectroscopy**

Seung Joong Kim, Benjamin Born, Martina Havenith, and Martin
Gruebele*

Angew. Chem. Int. Ed. 2008, 47, 6486 —6489
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Figure 1. KITA setup: THz pulses pass through a stopped-flow cell, where a mixer
combines denatured ubiquitin with denaturant-free buffer to start refolding. The shape
of the transmitted THz electric field is detected using a ZnTe crystal and an 800 nm gating
pulse delayed by Dt. The difference DE of the electric field between denaturant-free 1.5
mm protein solution and buffer is shown. For kinetics, the THz pulse is detected near the
maximum electric field, and the mixer is scanned in time t with respect to the THz pulse.
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Figure 3. Left: electric field E of THz pulses. As the mixer is scanned in time t with
respect to the THz pulse, the field changes because the folded protein solution has
different THz absorbance and refractive index than the unfolded protein solution.
Right: the ratio of protein to buffer signal reflects the refolding kinetics of Ub* (208C,
water/ethylene glycol buffer).
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Figure 4. Ub*V26A kinetics. Left: Terahertz transmission on and off
the transmitted electric field peak yields identical millisecond kinetics
at 208C. Right: Fluorescence-detected kinetics are much slower.
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Figure 5. KITA, fluorescence, CD, and SAXS
refolding kinetics of Ub*.

The bottom two panels are adapted from
reference [17]. Because of

the dead time, the KITA fit is an upper limit.
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pig muscle PGK complexed with ATP (from PDB)
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