40pCでのビーム輸送設計 バンチ長測定

2017.4.12. Wed. 第105回 ERL検討会 報告者:布袋貴大

- ・2017年3月cERLで40pCのビームコミッショニングを行った。
 - ・目的:40pCで低エミッタンスかつ短バンチ長の実現
 - もともとは60pCの予定であったが、レーザー出力の都合で 40pCに変更
- 実際のビーム試験で測定された初期バンチ長や加速されたエネルギーなどをフィードバックし、シミュレーションによるビーム輸送条件の改善を行った。
- また入射器診断ラインを用いて、下流でのバンチ長やエネルギー 拡がりを測定し、計算結果との比較を行った。
- 本報告ではシミュレーションによる輸送設計の詳細と、縦方向の ビームパラメータに関しての測定結果を紹介する。

実験からモデルへフィードバックできた項目

- •電子銃収束力
 - •新しい電子銃の電場モデルを作成
 - ・カソード据え付け誤差を0.4mmから0.8mmに変更
- スタックされたレーザー長
 - ・観測値FWHM=31ps(入射器空洞を用いて測定)
 - •観測値に合わせたフラットトップのモデルを作成
- •入射器空洞電圧
 - •入射器空洞で加速された後のエネルギー *E*tot = 5.12 MeV

・大崎さんのスライドより

試験目的

cERL最上流部であるカソード形状を正確に把握し 実験的に下流側でのビーム制御を行いやすくする

手順

- 1. フォトカソード上でレーザー照射位置を変化させ、出射される 電子ビームのxy平面位置を1.02m下流のモニタで測定。
- 2. Super Fish でカソードが形成する電場分布を計算。
- 電場分布をGPTで読み込み単粒子ビーム軌道を計算。
 (外力はカソードからの電場のみ考慮)
- 4. 実験の測定値と計算結果を比較。

・大崎さんのスライドより

ビーム位置測定(実験)

下記Parameterで電子ビームを生成し 1.02m下流のモニターでビーム位置を測定

・大崎さんのスライドより

電場計算(Super Fish)

・カソード周辺の形状を入力

・カソードの進行方向の据え付け誤差"r"を0.4mmから0.8mmまで
 変化させ電場計算

・大崎さんのスライドより

実験と計算の比較

カソードの据え付け誤差が0.8mmの場合の計算結果と
 実験結果がよく合うことを確認。

印加電圧 200kV[~]450kVの範囲でよく一致している。

青点・・Y=0, X=-4.0mm~4.0mm 緑点・・X=0, Y=-4.0mm~4.0mm 赤点・・GPT計算結果

大崎さんのスライドより

- ・印加電圧の広い範囲でよく一致している。SuperFishの電子銃構造
 は実機のカソード周辺の構造を再現していると思われる。
- ・実験でレーザー照射位置をカソード中心からずらすとモニターでの xy方向のビーム位置のずれが大きくなる。カソードが傾いている??

・大崎さんのスライドより

まとめ

・カソードから出射されるビーム位置を実験的に測定し、計算結果と比較。

 ・カソードの進行方向の据え付け誤差 "r" が0.8mmのモデルで 計算結果と実験結果がよく合うことを確認

印加電圧 200kV[~] 450kVの広い範囲でよく一致しており
 Super Fishの電子銃構造はカソード周辺の構造を再現していると期待

・実験でレーザー照射位置をカソード中心からずらすとxy方向の ビーム位置のずれが大きくなる。カソードが傾いている??

- ・最上流の入射器空洞を用いて、バンチ長を測定した。
 - ・偏向空洞を用いたバンチ長測定では、下流までの輸送中に 様々な影響を受けるが、上流部で測定することで、ほとんどダ イレクトに初期レーザー長を測定することができる。
 - 低電荷で測定
- •原理
 - ビームが空洞の中心を通らないとき、半径方向の電場の影響
 を受ける。
 - ・影響の受け方は乗っている位相で変化し、キック量とスクリーンまでの距離を調整することで、時間構造を横方向に射影できる。

宮島さんのスライドより

•大崎さんのスライドより、校正係数決め

バンチ長計算step1(X方向)

空洞周波数:1.3GHz 🛶 空洞の位相1度は2.14psec

図(steering-2.0A)よりcam3上で1度: 310/30 = 10.3pixelに対応

・大崎さんのスライドより、測定結果

バンチ長計算step2とstep3(X方向,FWHM)

図よりcam3でのビームサイズは148pixelと求まる。

バンチ長: 2.14psec*148/10.3 = 30.8psec

•大崎さんのスライドより、校正係数決め

バンチ長計算step1(Y方向)

空洞周波数:1.3GHz 🛶 空洞の位相1度は2.14psec

図(steering-2.0A)よりcam3上で1度: 213/20=10.7pixelに対応

・大崎さんのスライドより、測定結果

バンチ長計算step2とstep3(Y方向,FWHM)

図よりcam3でのビームサイズは157pixelと求まる。

バンチ長: 2.14psec*157/10.7 = 31.4psec

レーザー時間分布のモデル化

- ・モデル計算に用いているGPTに取り込めるようにレーザー分布作成。
- モデルはフラットトップとしたが、実際にはきれいに作るのは難しい。

- ・周回部へ入射する合流部の偏向電磁石を用いてエネルギーを測定した。
 - ・軌道(曲げ角)は決まっているので、設計通りに曲げるときの 磁場からエネルギーが分かる。

current

2.370 A

-33.858000 mm

- •モデルのEacc
 - inj #1 = 6.22 MeV
 - inj #2 = 6.8 MeV
 - inj #3 = 6.5 MeV

CAM14				
		Peak Posit	tion	-21.1883 mm
ROI	328 pixel	Current		52.150 A
akPos	0 pixel			
/pixel	64.50 um/pixe	Р	20.8	3890 MeV/C
rrent	52.150 A	PØ	19.9	9457 MeV/C
	-21.188250 mm	E	20.8	34517
		EØ	20.0	00110
	224 ains	Peak Posit	tion	0.0283 mm
CAM8 ROI eakPos	334 pixel 334 pixel	Peak Posit Current	t i on	0.0283 mm 5.214 A
CAM8 ROI eakPos /pixel	334 pixel 334 pixel 56.60 um/pixe	Peak Posit	tion	0.0283 mm 5.214 A
CAM8 ROI eakPos /pixel urrent	334 pixel 334 pixel 56.60 um/pixe 5.214 A	Peak Posit Current P P0	tion 5.09	0.0283 mm 5.214 A 0512 MeV/C
CAM8 ROI akPos /pixel rrent	334 pixel 334 pixel 56.60 um/pixe 5.214 A 0.028300 mm	Peak Posit Current P P0 E	5.09	0.0283 mm 5.214 A 0512 MeV/C 0473 MeV/C
CAM8 ROI eakPos //pixel urrent	334 pixel 334 pixel 56.60 um/pixe 5.214 A 0.028300 mm	Peak Posit Current P P0 E E0	tion 5.09 5.12 5.12	0.0283 mm 5.214 A 0512 MeV/C 0473 MeV/C 2068 2029
CAM8 ROI eakPos //pixel urrent CAM31	334 pixel 334 pixel 56.60 um/pixe 5.214 A 0.028300 mm	Peak Posit Current P P0 E E0	5.09 5.12 5.12	0.0283 mm 5.214 A 0512 MeV/C 0473 MeV/C 2068 2029
CAM8 ROI eakPos /pixel urrent CAM31	334 pixel 334 pixel 56.60 um/pixe 5.214 A 0.028300 mm	Peak Posit Current P P0 E E0 Peak Posit	tion 5.09 5.09 5.12 5.12 tion	0.0283 mm 5.214 A 0512 MeV/C 0473 MeV/C 068 029

P0

Е

ΕØ

2.64492 MeV/C

2.30983

2 69383

今回フィードバックしきれなかった項目

- ・レーザースポットサイズ
 - •初期のビームサイズに対応
 - SLscanからフィードバックする予定だった。
 - d=2.0mmでは低電荷ではビームサイズが大きくノイズに負けるが、測定できる領域では空間電荷効果を無視しきれなかった。
 - レーザーの時間構造がフィードバックできたので、空間電荷があっても合わせこめるか…?(課題)

- ・空間電荷効果を完全に無視できる10fCが理想的であったが、ノイ ズが大きくてまともに測定できず。
- 50fC, スタックパルスでの250fCではスポットサイズ修正には至ら なかった。

パルススタックによる空間電荷効果の緩和 • 7.7pC, 20pCについてスタック前後でソレノイドスキャンを実施。 • 空間電荷効果の緩和が確認できた。

エミッタンス算出

- •目的
 - 高電荷では低電荷と比べ電子銃直下の低エネルギー部でどれだけエミッタンスが悪化するかの大まかなあたり付け。
 - あとせっかくデータをとったので。
- •原理
 - ・収束力を変えながら、下流スクリーンでのビームサイズを測定

$$\sigma_{\rm MS} = \sqrt{L\sigma \left(k - \left(\frac{1}{L} - \frac{\alpha}{\beta}\right)\right)^2 + \frac{L^2 \varepsilon^2}{\sigma^2}}$$

- この関数形で測定結果をフィッティングし、エミッタンスを求める。
- リニアな関係に基づく式なので、今回の結果はあくまで目安程 度のもの。

- ・基本的には電荷が大きくなるほどエミッタンスも悪くなっている。
- ・パルススタックによりエミッタンスの悪化も抑えられている。
- ソレノイドによる回転はあまり考えず、スクリーンでの水平・垂直 をそのまま使用。

- ・ベースとしてはエミッタンス及びバンチ長を最小化するように MOGAによって多目的最適化
- ・ビーム試験の結果を素早く反映するために、ある程度の最適化の後は、GAによらず手動で微調整
- ・計算には粒子トラッキングコードGPTを使用
 - ・マクロ粒子数25000で計算

入射器診断ラインエンベロープ発展

• cam5までのエンベロープ発展

入射器診断ラインRMSビームサイズ発展

• cam5までのビームサイズ発展

入射器診断ラインRMSエミッタンス発展

• cam5まで輸送

入射器診断ラインRMSバンチ長発展

• cam7まで輸送

入射器診断ラインエネルギー拡がり発展

• cam7まで輸送

周回部入射エンベロープ発展

• 主空洞出口まで輸送

周回部入射RMSビームサイズ発展

• 主空洞出口まで輸送

周回部入射RMSエミッタンス発展

• 主空洞出口まで輸送

周回部入射RMSバンチ長発展

・主空洞出口まで輸送

周回部入射エネルギー拡がり発展

・ 主空洞出口まで 輸送

スリット(V)スキャンで期待されるエミッタンス • V方向スリット位置での電荷ごとのエミッタンス比較 • d=2.0mm: 1.0pC, 7.7pC, 20pC, 40pC

スリット(H)スキャンで期待されるエミッタンス ・H方向スリット位置での電荷ごとのエミッタンス比較 ・d=2.0mm: 1.0pC, 7.7pC, 20pC, 40pC

- ・偏向空洞位置での電荷ごとのバンチ長
 - d=1.0mm: 400fC, 1.0pC
 - d=2.0mm: 20pC, 40pC

cam7でのエネルギー拡がり

・偏向空洞位置での電荷ごとのバンチ長

• d=2.0mm: 1.5pC, 7.7pC, 20pC, 40pC

偏向空洞を用いたバンチ長測定

- 入射器診断ライン下流の偏向空洞を用いて、バンチ長測定を 行った。
 - ・目的:設計通りにバンチ長を縮められているかの確認
- •原理
 - ・直方体型空洞のダイポールモード(2.6 GHz)を利用し、ビーム 軸上の磁場で垂直方向にビームをキック。
 - キック量と光学系を調整してスクリーンに時間構造を射影する。

校正係数の測定

- ・空洞の周波数 2.6 GHz -> 約 1.1 ps/deg
- ・スクリーン上のビーム位置の変化 2.5 pixel/deg
- •校正係数 0.44 ps/pixel

垂直拡大系にセットアップ

400fC測定

・ 分解能の寄与を差し引いて計算

1.0pC測定

・ 分解能の寄与を差し引いて計算

・ 分解能の寄与を差し引いて計算

・ 分解能の寄与を差し引いて計算

モデルとの比較

- ・ 値に 少し ずれは あるものの、 傾向は良く 一致。
- ・40pCでもほぼ設計通りの値が得られている(わずかに誤差の外)。
- フィッティングエラーのみでなく、校正係数の見積もり誤差や測定系の誤差などを考慮すれば、20pCも誤差の範囲で一致するかもしれない。

- 入射器診断ライン下流の偏向電磁石とスクリーンを用いてエネル ギー拡がりの測定を行った。
 - ・目的:計算との比較のため
- •原理
 - 一様磁場中での電子の軌道はエネルギーに依存
 - ・偏向電磁石で曲げることにより、エネルギーの拡がりに応じた 横方向の拡がりが生じる
 - ビームサイズをスクリーンで測定することで、エネルギー拡が りを算出
 - cam7での分散関数は0.825m

$$\sigma = \sqrt{\beta \varepsilon + (\eta \delta)^2} \longrightarrow \sigma = \eta \delta$$
$$\eta = L\theta, \delta = \frac{\sigma_p}{p}$$

1.5pC測定

• $\delta = 0.1952 \pm 0.0039$ %

7.7pC測定

• $\delta = 0.1168 \pm 0.0012$ %

20pC測定

・ $\delta = 0.1042 \pm 0.0013 \%$ ・プロファイル保存し忘れ。

40pC測定

• $\delta = 0.1023 \pm 0.0018$ %

モデルとの比較

- ・傾向は一致していると言ってもよいのではないか。
- ・電荷の高いところでズレが大きいのは、ビームサイズを絞り切れていなかったり、エミッタンスが大きめなせいか。

まとめ

- ビーム試験の結果を反映させながら、低エミッタンス・短バンチを 実現できるような輸送設計を行った。
- 縦方向のビームパラメータに関しては、初期バンチ長、空洞の加速電圧のフィードバック、慎重な位相調整のおかげか、バンチ長はほぼ設計通り、エネルギー拡がりも傾向としては一致しているように見える。
- •スポットサイズのフィードバックは叶わずモデル上ではQMを通る まで完全に円筒対称であるという条件付きだが、約0.5mm.mrad のエミッタンスが設計値
 - しかし実際には空洞で垂直方向に伸ばされるなど、まだまだ横方向はモデルの改善余地がある。