40PCでのQ SCANによる エミッタンス測定

第105回ERL検討会 2017年4月12日(水)

島田美帆

Q scan emittance measurement list

3/30(木)診断部: 20pC, 7.7pC@φ2mm、1pC@φ1mm 北側直線部: 2pC@φ1mm for バンチ圧縮スタディ

3/31(金)南側直線部: 40pC, 20pC, 7.7pC@φ2mm 北側直線部: 40pC, 20pC, 7.7pC@φ2mm 主空洞前: 40pC, 20pC, 7.7pC@φ2mm

水平方向のエミッタンス

	1pC	2pC	7.7pC	20pC	40pC
診断部 (QMGE02-cam5)	0.418 (0.05%)		3.43 (0.01%)	7.38 (1%)	
診断部 (QMGE02-cam6)			0.898 (2%)	1.74 (3%)	
主空洞手前 (QMAG04-cam10)			1.01 (1%)	1.52 (0.7%)	2.02 (0.3%)
北側直線部 (QMAM01-cam13)		1.61 (0.09%)			
北側直線部 (QMAM02-cam13)			3.94[1.8]	6.16 (2%)	9.25
南側直線部 (QMIM03-cam18)			4.84[1.5] (0.8%)	7.09 (0.9%)	9.75 (3%)

計算結果の信用度:信用できない、まあまあ、良好。

⁽⁾内はfitting範囲を20%変えたときの差。[]内は2016年3月の結果(390kV, 3MeV入射)。

垂直方向のエミッタンス

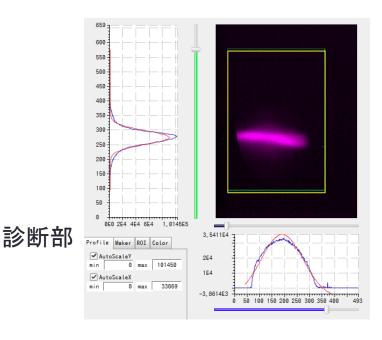
	1pC	2pC	7.7pC	20pC	40pC
診断部 (QMGE02-cam5)	0.348		1.15 (<<0.01%)	1.54 (2%)	
診断部 (QMGE02-cam6)			2.41 (1%)	2.84 (3%)	
主空洞手前 (QMAG04-cam10)			0.893[0.9]	1.45 (2%)	2.39 (0.3%)
北側直線部 (QMAM01-cam13)		0.902			
北側直線部 (QMAM03-cam13)			1.96[1.0] (0.4%)	2.43 (0.6%)	3.24 (02%)
南側直線部 (QMIM03-cam18)			2.74[1.1] (0.8%)	3.19 (<<0.1%)	4.20 (0.2%)

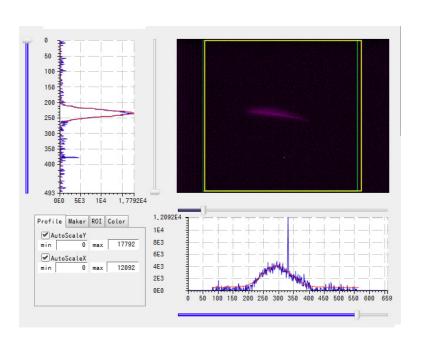
計算結果の信用度:信用できない、まあまあ、良好。

⁽⁾内はfitting範囲を20%変えたときの差。[]内は2016年3月の結果(390kV, 3MeV入射)。

測定誤差要因

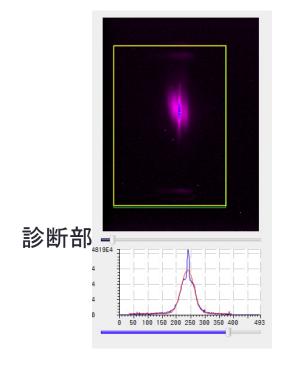
データのステップサイズ	数10%?	特にウエスト付近のデータ数が少ないと誤差が大きくなる傾向(BDWG160412資料より)
フィッティング範囲	1%~10%	人の判断が入るため、時折数10%近くまで増加 人為的な作業があるので対策困難
QM垂直方向磁場誤差*	2%	以前の測定結果では、水平方向と2%の差 入射診断部は水平・垂直それぞれ測定結果を使用
電子エネルギー	1%~数%	電子エネルギーの測定値に誤差 想定より低いエネルギーで運転しているため、磁場測定のデータがない ことが原因。磁場測定やり直しには手間が多すぎる。
QMとスクリーンの距離*	< 1%	距離数mに対し、数cmの誤差あり。 周回部ではCADおよびelegantの台本には金属ミラーの位置が記載。 Yagスクリーンは2cm程度手前にある。cam3以外の入射部・診断部は 問題なし
QMの電流設定値	~0.1%	CAENの精度が5Aの50ppmで0.25mA。 Q scanで使用するa few 100mAに対して0.1%以下か。

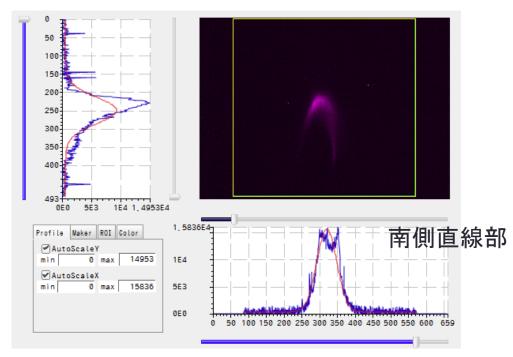

- ・ *については今後データ更新を行う。
 - 制御パネル・elegantの台本で水平・垂直で異なるItoK値を入れられるのか。
- ・ 各ビームプロファイルに対するGaussian fitの残差二乗和(WSSR)をログに残すか
 - 無意味かもしれないため検討中


ビームプロファイルの判断

ビームプロファイルの目視の判断でQ scanのfitting範囲に入れるかどうかを判断

判断が容易なケース:正確に測定できていないと判断した場合

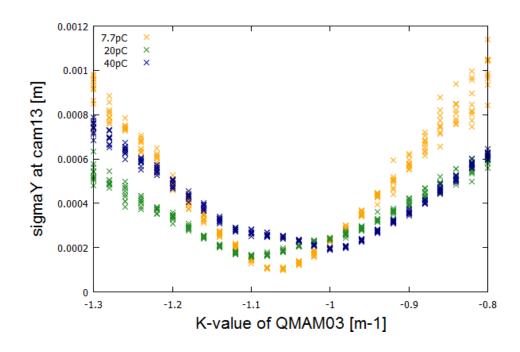

- スクリーンからはみ出た場合
 - ・左の図では、水平方向は信用性低い、垂直方向はまだ信用できると判断
- ・ビームが広がりすぎてSN比が下がった場合

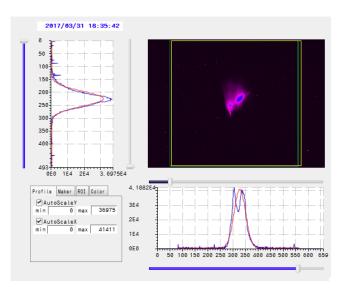


ビームプロファイルの恣意的な判断

- やや小さめな結果を出しそうなものは採用し、裾に引きずられているものは信頼 度低いとしている。(恣意的)
 - →方向性を合わせたほうがいいのではないか コアだけを見るべき(90%, 95%, etc)、テールも含めるべき、etc
- ・ウエスト付近では解像度が下がり、変な形状が目立たなくなるが、改善されているわけではない。
- 変な形状では、本来のrmsサイズとGaussian fitの結果に差がある可能性あり。

×:裾だけ合わせている




○:水平方向はまあまあ合っている。

×:垂直方向は裾に引きずられている。

空間電荷効果

- 北直線部(QMAM03-cam13)でいびつな応答
 - 20pCと40pCでウエストがつぶれている。
 - スキャン中、プロファイルが急に変わったように感じた。20pCは回転してもいた。
 - 空間電荷効果で小さくまとめることができない、という可能性は低い。
 - 主空洞手前で同程度の大きさにすることができていたため。

Q scan中のone scene

各部のQ scanについて

• 診断部

- クロスチェックのためにQMGE02-cam5、QMGE02-cam6で測定したが、結果が一致せず。(パネル上ではQMGE03、04はK=0となっていた。)
- ビームの広がりが大きく、垂直方向のウエスト付近で水平方向にビームがはみ出すことがあった。

• 主空洞手前

急いで測定準備をしたため、ウエスト付近で応答が飽和してしまった。

北側直線部

- ・ (特に垂直方向で)ウエストが見つからず、Q scanのためのopticsを見つけるために時間がかかった。
- 普段と異なるQMとスクリーンの組み合わせで測定。
- ・ ウエストで2pixel以下になってしまい、測定精度にやや疑問。

• 南側直線部

三日月の形状が見えたことから、輸送途中でビームが広がっていた可能性

まとめ

- 電荷量が大きいほど、下流に行くほど、エミッタンスが増加する傾向
- 7.7pCについては、前回2016年3月(390kV, 3MeV入射)とほぼ同じか、それより大きい。
- 40pCは主空洞手前で2~3 umradの規格化エミッタンスを得た。
- Optics調整の時間がなかったため、やや大きめの結果。