

2017年6月8日 ERL検討会 梅森 健成 (SCRFグループ)

はじめに

- LCLS-IIをはじめ、high-Qでの超伝導空洞の運転にむ けた計画が、世界各国で行われている。
- KEKにおいても、ここ2~3年研究を進めている。
- ・以前、2015年9月のERL検討会にて「High-Qを目指した窒素ドープの試み」として、KEKでの窒素ドープはうまくいっていない旨の報告。

TTC meeting (2014/12月) Alex Melnychuk 「Update on N doping at Fermilab」より

One cryomodule milestone – avg Q (2K, 16 MV/m)~3.75e10, avg quench field ~22 MV/m

Why N-doping does not work?

Possible reason of bad results are followings.

- 1. Nb surface was not N-doped correctly.
 - Something wrong?

- Difference of vacuum system? (Cryopump or diffusion pump, oil-free?)
- Difference on N-doping system?
- 2. Effect due to remnant field on vertical test cryostat.
 - Trapping of magnetic field on N-doped surface is more sensitive to remnant field on vertical test cryostat. (More than a few ~ several times sensitive?)
 - ≻ KEK's VT cryostat has more than 10 mG.
 - ➤ Also depend on cooling procedure.
- 3. Cavity or material is wrong?
 - ➤ Cavity is made at KEK-CFF.
 - ➤ Nb supplier is ULVAC and Tokyo-Denkai.

縦測定での磁場環境??

1. High-Qの測定に向けたKEK-STFの縦測 定クライオスタット磁場環境の改善

2. FNALおよびJ-PARCとの協力のもとでの窒素ドープの結果

High-Q study

Rres history of single-cell cavity vertical tests

- R_res gradually increase?
- Q-values of LG cavity were gradually decrease.

Degradation of R_res?

Check magnetization for most of all the components of vertical test

Study on magnetized components (example)

From T. Yanagimachi(9/26)

No.	name	Magnetic field [mG]
14	Φ 034 metal valve (1)	430
15	Φ 034 metal valve (which observed vacuum leak)	80
19	Φ 034 metal valve 2	59
25	Volts and washers for support of input coupler shaft	140
28	Nuts and washers for hanging cavity	110
29	Stat-volts, nuts and washers for hanging cavity	300

Measure inside magnetic shield by using 3-axis flux gate sensor.

Effects of SUS shafts

SUS shafts for variable coupler were highly magnetized. More than 1 G!!

Magnetic field with shafts inside vertical test dewar

Angle	Bx [mG]	By[mG]	Bz[mG]	B[mG]
0	-7	-11	-6	15
90	-6	2	-9	11
180	6	-11	-7	15
270	8	130	-49	139

If both shafts were removed $B \leq 2mG$ for any positions.

Then...

Exchange SUS shafts to Ti Exchange or remove SUS components as much as possible Exchange metal valve to less magnetized one

And vertical tests were carried out.

Typical vertical test setup

※ Pictures are for different measurement.※ But setup of sensors and coil are same.

Flux gate sensor, Si temperature sensor, heater and solenoid coil were used.

Vertical test results after demagnetization effort

- FG single-cell cavity (Tokyo-Denkai)
- Nominal recipe (Not N-doping)
- With cancelling coil
- With thermal gradient by heater

Very high-Q was observed after the effort for demagnetization

Flux expulsion during cool-down(add 16mG with coil)

- FG single-cell cavity (ULVAC)
- Nominal recipe (Not Ndoping)
- 900 degree heat treatment applied
 - Add +16mG with coil (Total 9 + 16 = 25mG)
 - With thermal gradient by heater
- Clear flux expulsion(~90%) can be observed.
- Temperature gradient of more than 1 degree between equator and lower beampipe iris.

<u>Summary (High-Q study)</u>

- It was difficult to achieve high-Q at KEK-STF vertical test.
- Magnetization was investigated for each components of vertical tests.
- Some components were highly magnetized. One of highest was shaft for variable coupler.
- Magnetized components were removed or exchanged. Also solenoid coil was prepared.
- After these effort, high-Q could be measured and clear flux expulsion signal was observed.

Nitrogen doping

KEK真空炉での窒素ドープの一例(2015年9月のERL検討会スライドより)

Why N-doping does not work?

Possible reason of bad results are followings.

- 1. Nb surface was not N-doped correctly. \Rightarrow N-dope@FNAL and J-PARC
 - Something wrong?
 - Difference of vacuum system? (Cryopump or diffusion pump, oil-free?)
 - Difference on N-doping system?

2. Effect due to remnant field on vertical test cryostat. ⇒ VT@FNAL(March)

- > Trapping of magnetic field on N-doped surface is more sensitive to remnant field on vertical test cryostat. (More than a few \sim several times sensitive?)
- ≻ KEK's VT cryostat has more than 10 mG.
- ➤ Also depend on cooling procedure.
- 3. Cavity or material is wrong? ⇒ N-dope@FNAL and VT@FNAL(October)
 - ➤ Cavity is made at KEK-CFF.
 - ➢ Nb supplier is ULVAC and Tokyo-Denkai.

縦測定での磁場環境??

材料または製法??

真空炉??

<u>Vertical test of KEK doped</u> <u>cavity at FNAL</u>

- Vertical test of KEK N-doped cavity was carried out at FNAL, where magnetic field inside VT dewar is very small.
- However, Q-value was not good as nominal N-doping cavity.

Even in zero magnetics field, still Rres was too large.

N-dope and VT of KEK cavity @FNAL

- 2016/7/9 EP 60um
- 2016/7/12 N-doping (FNAL standard recipe 2/6)
- 2016/9/13 EP 6um
- 2016/10/25, 26 VT

1.00F-01

1.00E-02

1.00E-03

1.00E-05

1.00E-06

1.00E-0

1.00E-08

1.00E-09

1.00E-10

- KEK cavity was doped at FNAL and also tested.
- It showed successful doped performance.

N-doping successful !! Thanks for FNAL-SRF group!!

Why N-doping does not work?

Possible reason of bad results are followings.

- 1. Nb surface was not N-doped correctly. \Rightarrow N-dope@FNAL and J-PARC
 - Something wrong?
 - Difference of vacuum system? (Cryopump or diffusion pump, oil-free?)

真空炉??

縦測定での磁場環境

材料または製法??

Difference on N-doping system?

2. Effect due to remnant field on vertical test cryostat. ⇒ VT@FNAL(March)

> Trapping of magnetic field on N-doped surface is more sensitive to remnant field on vertical test cryostat (More than a few \sim several times sensitive?)

➢ KEK's VT eryostat has more than 10 mG.

Also depend on cooling procedure.

3. Cavity or material is wrong? ⇒ N-dope@FNAL and VT@ENAL(October)

Cavity is made at KEK-CFF.

Nb supplier is ULVAC and Tokyo-Denkai.

Furnace at J-PARC

- J-PARC has oil-free furnace with cryo-pump and TMP.
- We try to use it for N-doping / Ninfusion.
- Normally used for degassing of beam-ducts and components.

N-doping@J-PARC furnace

N-doping at 2017/May/11

800 deg, 3 hours 800 deg, 20 min, N 2.7Pa 800 deg, 30 min Cooldown

Pumping system of J-PARC furnace

- -- Cryopump + TMP (+ scroll)
- -- reach to 1e-6 Pa after cool-down

VT results of N-doping

15um EP HPR (total) 3~4hours Dry assembly (No baking)

- Magnetic field canceled with solenoid coil. (< 1mG)
- Cooled down with thermal gradient by heater

Comparison with previous measurements

Summary (N-dope)

- In KEK, study on N-doping have been continued under collaboration with FNAL and J-PARC.
- N-doping was tried using J-PARC furnace, which has oilfree pumping system, consists of a cryopump and TMPs.
- After removable of 15um by EP, vertical test showed good performance: 1.6e11 at 7MV/m(@1.47K) and 3.0e10 at 15MV/m(@2.0K).
- This is first successful N-doped results in Japan.
- Clean furnace seems to be essential for N-doping. Details of reason is under investigation.

<u>物構研・加速器合同セミナーのお知らせ</u>

- 日時:7月4日(火)15時から16時30分
- 場所:4号館1階セミナーホール
- 講師:許斐太郎氏(加速器第六研究系 助教)
- 題目:超伝導RF加速空洞のHigh-Q, High-Gの最近の動向とKEKでの展開

(Recent world wide research and KEK activities of the Superconducting RF cavity for High-Q, High-G)

要合同 罕加 1. は 般的 良 雷 峃 gB2、 百電 高電 の重要 開始 R&DF+7 KEKでの展開を の最近の動 を説明 後. d 7.-

世話人 村上洋一(物構研)、道園真一郎(加速器)

Backup slide

RGA spectrum of KEK big furnace

No RGA data for KEK small furnace

<u>RGA spectrum of</u> <u>J-PARC furnace</u>

750deg, 3hour annealing (No doping) No cavity. Jigs and Nb samples.

Nb sample analysis for KEK big/small furnace (Heat treatment without N-dope) Analyzed by ULVAC

ULVAC, Inc.

Each figures are up to 4um.

Nb sample analysis for KEK big furnace Analyzed by ULVAC

Heat treatment with N-doping

Heat treatment No N-doping

No heat treatment (only EP)

N is observed for N-doped sample C is observed for heat treated samples.

Each figures are up to 4um.

SIMS for N-doped sample(~100um)

Analyzed by ULVAC

Total of three measurements

Rapidly decrease until ~1um

Depth (nm)

- Flat up to ~10um
- Then gradually decrease (down to lower limit)
- N behavior seems to be similar

What does N treatment do? N depth profiles by SI

Dep

Figure 6: SIMS results from a sample treated with TE1-4 and TE1-5. Single-cell cavities are also included for reference.