FZD訪問報告

2010年12月17日 第49回ERL検討会 高エネルギー加速器研究機構 加速器第7研究系 山本将博

FZD研究所の場所

ELBE (Elektronen-Linearbeschleuniger für Strahlen hoher Brillanz und niedriger Emittanz)

FZD入口にドレスデン中央駅から 乗り換え無しで来れるバス停が ある。

ELBEは2000年頃より 建設。現在はユーザー 利用もされている。 加速器系のスタッフは ポスドク等含めて 30名程度。

ELBE加速器全体図

1: Diagnostic station, IR-imaging and biological IR experiment

2: Femtosecond laser, THz-spectroscopy, IR pump-probe experiment

3: Time-resolved semiconductor spectroscopy, THz-spectroscopy

4: FTIR, biological IR experiment

5: Near-field and pump-probe IR experiment

6: Radiochemistry and sum frequency generation experiment, photothermal deflection spectroscopy

【熱電子銃(250kV)】 *大気中にHV stationがある。

- * HV station (大気中)と隣接して熱電子銃用の電源、グリットのパルサー 電源のstationがあり、stationは接地に対して2段のdividerで支持。
- *電子銃へのHV供給の際、セラミックの中間部に 金属製のリングが外側にはめられており、その リングとStationの2段目のDividerが同電位となる ように接続されている。
- * 電子銃は、13MHzで運転されている。電荷量は 77pC,エミッタンスは約8mm.mrad。

*最初のバンチ長は500ps。その後260MHzの バンチャーと1.3GHzのバンチャーを経て主加速前に 10ps以下となる。TESLA型の9連空洞(2組)のSRF加速 空洞で20MeV加速される。このクライオスタットが2台

で、40MeVまで加速される。バンチャー部分までの真空度はE-6 Pa程度。 1.3GHzのバンチャーの後にSRF-gunからの合流部がある。 The Second Workshop on High Average Power & High Brightness Beams J. Teichert氏発表スライドより。

INTRODUCTION

Generation of high-brightness electron beams

1. direct production of short pulses:

laser & photo cathode

2. high acceleration field at cathode:

radio frequency field

3. CW operation for high average current:

superconducting cavity

SRF PHOTO

Institute of Radiation Physics • Jochen Teichert • www.fzd.de • Forschungszentrum Dresden-Rossendorf

The Second Workshop on High Average Power & High Brightness Beams J. Teichert氏発表スライドより。

Radiation Source ELBE

SRF Gun Parameter

parameter	present cavity			new "high gradient cavity"	
	measured '08	ELBE	high charge	ELBE	high charge
final electron energy	2.1 MeV	3 MeV		≤9.5 MeV	
peak field	13.5 MV/m	18 MV/m		50 MV/m	
laser rep. rate	1 – 125 kHz	13 MHz	2 – 250 kHz	13 MHz	≤500 kHz
laser pulse length (FWHM)	15 ps	4 ps	15 ps	4 ps	15 ps
laser spot size	2.7 mm	5.2 mm	5.2 mm	2 mm	5 mm
bunch charge	≤ 200 pC	77 pC	400 pC	77 pC	1 nC
max. aver. Current	1 µA	1 mA	100 μA	1 mA	0.5 mA
peak current	13 A	20 A	26 A	20 A	67 A
transverse. norm. emittance (rms)	3±1 mm mrad @ 80 pC	2 mm mrad	7.5 mm mrad	1 mm mrad	2.5 mm mrad

Institute of Radiation Physics • Jochen Teichert • www.fzd.de • Forschungszentrum Dresden-Rossendorf

SRF-Gun (その1)

- *カソードはCs2Te。スーツケースでインストールする。インストールの際は、 SRF-gun本体の冷却は止める。また、スーツケースの接続の際は接続箇所 のベーキングが必要。
- *カソードは後部から液体窒素にて冷却される構造になっている。
- *運転は最高で125kHz。レーザーのアンプ系で制約を受ける。(再生増幅器 を使用するため、Pockels cellの駆動に限界がある。)
- 将来は全てSolid Stateのアンプを使用して13MHzの運転を行う予定。
- *電子銃部への電力は最大で10kW。
- * カップラー部は、warm側で一度Vacuum windowを介し、Cold側にもうひとつのVacuum windowがある。各windowには放電を監視するための光電子増倍 管が付けられている。あるレベルを超えるとインターロックで止まる。
- *カソードにはRF電場とは別にDCの電圧(数kV)がかけられる。カソードは Cavityには接触しておらず、カソードの後方にチョーク型Cavityが設置され ている。カソードとCavityの間は1mmの隙間がある。
- (Cavity側の穴 o12mm、カソード o10mm)
- *真空作業時は全て簡易クリーンブースを設置した状況で作業を行う。

詳しくは<u>http://www.fzd.de/db/Cms?pNid=145</u>をご覧ください。

SRF-Gun (その2)

- * 定常運転のため、SRF-gunlにRFを供給しない時は、SRF-gunのクライオモジュール内 にあるヒーターで同量の熱を発生させ、常に同じ温度・圧力となるようにコントロール している。特に圧力を一定にしないと共振周波数が変化する問題がある。
- *レーザーの導入は、SRFモジュール前方にあるICF70の6方管から行う。レーザーは 途中の経路で2%程度splitされて、Vacuum側のミラーおよびカソード同じ距離に設置 された2つモニターでミラー位置およびカソード位置での照射位置をコントロールしている。 (2つのミラーに対してフィードバックをかけている。)
- *電子銃出口には大きめのソレノイドが設置されている。ソレノイドの位置や傾きは すべてリモートでコントロール可能。

*カソードのトランスファーはベローズを使用している。ステージには電子銃へカソードを こすらずに入れるため、高さや傾きを微調できる構造になっている。 *カソードは数個同時にストックされている。

* SRF-gun下流にはBMで、ELBEへ入射するためのビームラインとビームの診断部ラインの切替を行っている。

SRF-Gun (その3)

*ビーム診断部には、2箇所にスリット、スクリーン、OTR、FCが設置され ており、1箇所で4つのモニターを、ベローズ長をコントロールして切り替 えている。

*2箇所のモニターの下流に180度切替えのBMによるエネルギーアナラ イザが設置されている。パルス長の測定はチェレンコフ光モニターおよ びストリークカメラを利用している。 現在のシステムではエネルギー拡がりは約10keV。

* ELBEビームラインへの輸送効率は98%以上で行う。(インターロックで 2.5%以上のロスが合った場合には止める)

* SRF-gunでは最大8MeVまで加速できるが、現在は3MeVで運転している。SRF-gunのチューニングは、ハーフセル部と3Cavity部の2箇所で Cavity長を独立に調整できるシステムを使って行っている。チョークモー ドCavityのチューニングは設置時に(ネジを締める等で)行えるだけで、 フィードバックはかけられない。

*ストレージChamberにあるカソードとの交換は30分程度でできる。

The Second Workshop on High Average Power & High Brightness Beams J. Teichert氏発表スライドより。

BEAM PARAMETER MEASUREMENT

Institute of Radiation Physics • Jochen Teichert • www.fzd.de • Forschungszentrum Dresden-Rossendorf

カソード膜作製は、ELBE棟とは別の建屋で行っている。製膜後、Vacuum suit caseにて 真空保管環境で移動し、電子銃へ接続。

