cERLにおける 陽電子研究施設の可能性

兵頭俊夫 KEK 物質構造科学研究所 低速陽電子実験施設(SPF)

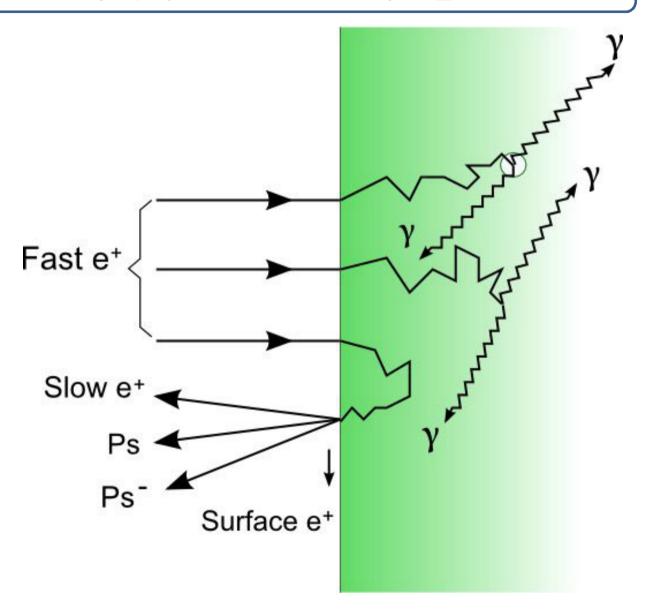
エネルギー可変単色陽電子ビームの利用

陽電子に対して負の仕事関数をもつ減速材を利用して 低速陽電子を作り、任意のエネルギーに加速して試料 に入射

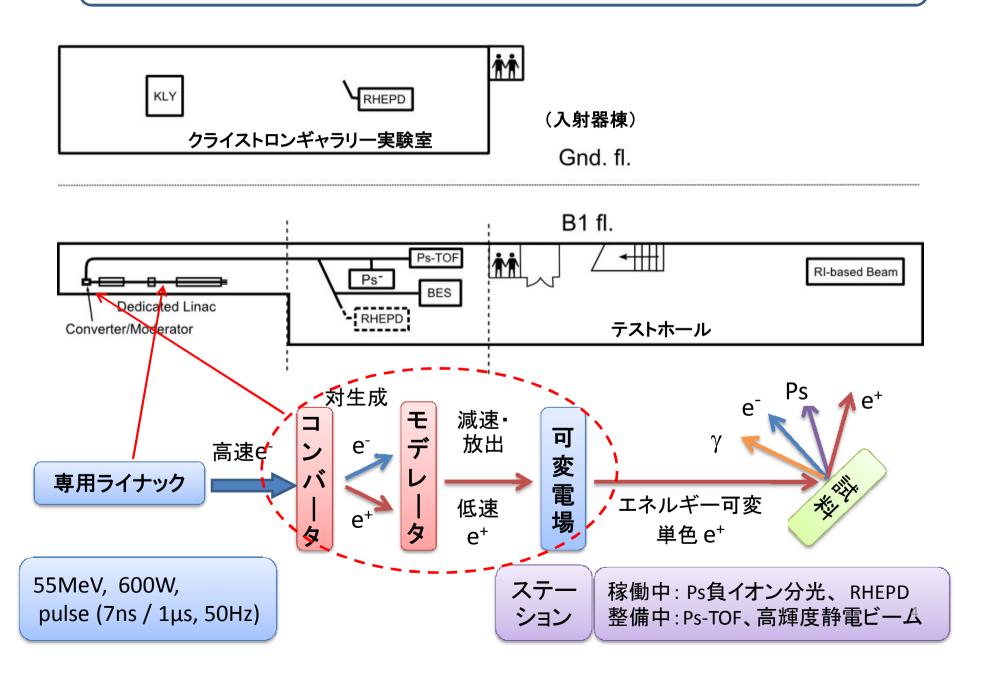
→ 二次粒子(γ線、Ps、Ps-、電子、(陽電子))を観測

DCビーム:

陽電子回折(RHEPD、LEPD) ドップラー広がり法、2D-ACAR コンシデンスドップラー広がり法 陽電子寿命・運動量相関測定(AMOC) 高輝度静電ビーム 陽電子顕微鏡


パルスビーム

Ps-TOF、陽電子オージェ 陽電子寿命、Ps /Ps⁻ の分光 単色Ps ビーム



物質最表面の構造解析 薄膜・表面の電子構造解析 格子欠陥の走査顕微鏡像 多孔性薄膜の空孔解析 (燃料電池・反浸透膜・気体分離膜) イオン照射表面の解析・評価 表面近傍の元素分析 原子分子散乱(陽電子・Ps) Psの基礎物理学

物質に入射した陽電子

KEK-IMSS 低速陽電子実験施設の現状

KEK-IMSS 低速陽電子 実験施設の ビーム生成部

Accelerated Electrons

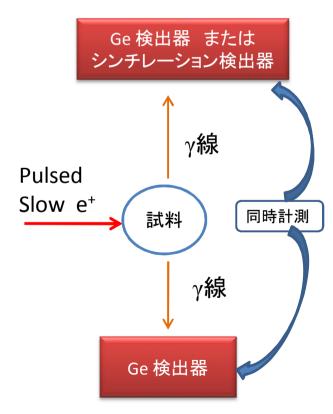
Converter / Moderator Chamber

Energy-tuned Positrons

cERL のCW超電導ライナックを利用した 低速陽電子ビーム

- エネルギー可変単色陽電子ビーム(500eV~50keV)
 - ➤ CW超電導ライナック 5MeV、10mA、1.3GHz
 - $> 10^7$ slow e⁺/s ?
 - > 10 slow e⁺/pulse
- ・現在のSPFのビーム強度と同程度でも CW は強力な武器
 - ➤ DCビームでなければできない実験がそのままで可能
 - ▶繰り返し周波数100kHz程度の短パルスにする際、DC化 過程のロスがないので、世界最高強度の短パルス低速陽 電子ビームが得られる

利用法(1)


- DCビームとして利用
 - ▶陽電子回折(RHEPD、LEPD) (←輝度増強が必要)
 - ▶ドップラー広がり法
 - ➤ CDB(同時計測ドップラー広がり法)

CDB

- ➤Ge検出器立体角 1/100
- ➤ Ge検出器効率 1/10
- ▶片側のGe検出器の計数率:

 $10^7 \times 10^{-2} \times 10^{-1} = 10^4 \text{ cps}$

➤同時係数率: 10⁴ x 10⁻¹=10³ cps

Coincidence Doppler Broadening

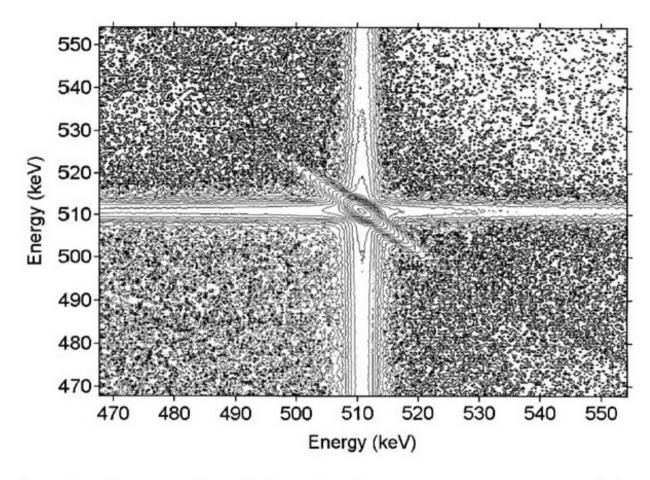
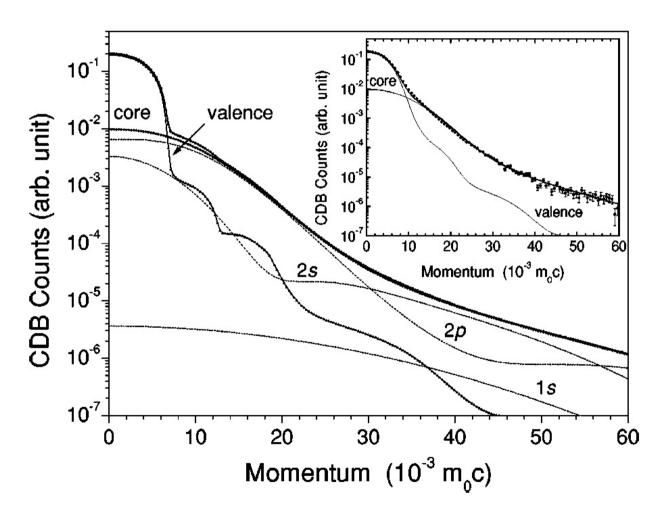
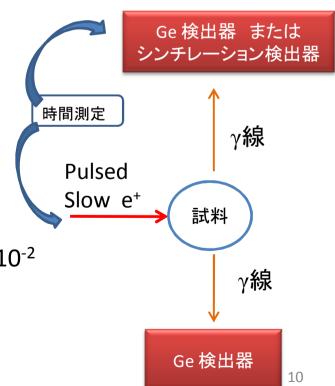



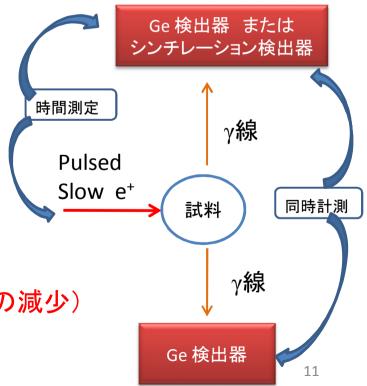
Fig. 1. Contour plot of the coincidence energy spectrum of the observed gamma-rays.

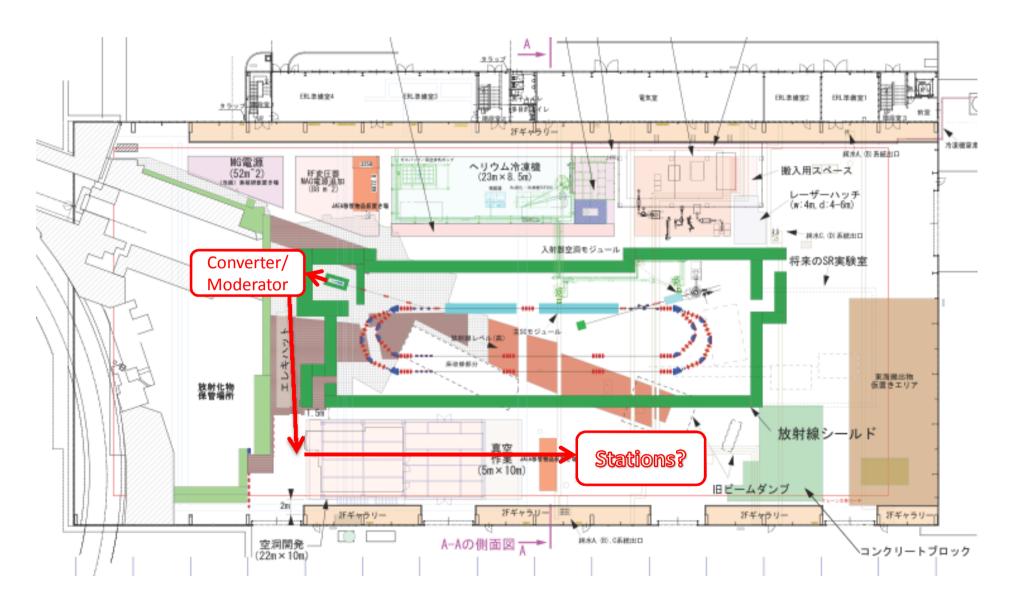

Coincidence Doppler Broadening

Tang et al.: Phys. Rev. B 65 (2002) 045108.

利用法(2-1)

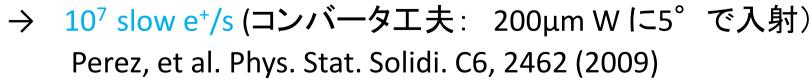
- パルス化して利用
 - ▶パルス幅50ps、繰り返し周波数100kHz
 - ▶ 陽電子およびポジトロニウムの寿命による物質研究
 - ▶高計数率の測定が可能
 - ▶パルス化の効率 1/10
 - > 10 slow e⁺/pulse
 - ▶シンチレーション検出器立体角 1/100
 - ▶シンチレーション検出器効率 1/10
 - ➤計数率: 10⁵ x 10 x 10⁻² x 10⁻¹ = 10³ cps
 - マルチストップの確率 10 x 10⁻² x 10⁻¹ = 10⁻²

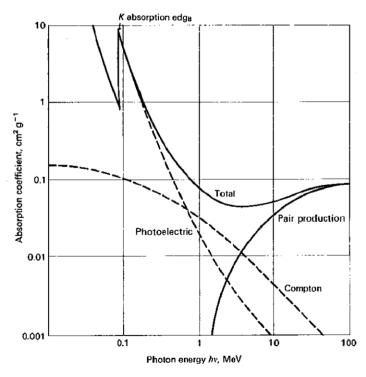

利用法(2-1)


- パルス化して利用
 - ▶パルス幅50ps、繰り返し周波数100kHz
 - ➤ AMOC-CDB(寿命運動量相関同時計測ドップラー広がり 法)
 - ▶最も高度の測定がルーチンで可能
 - ▶パルス化の効率 1/10
 - ➤Ge検出器立体角 1/100
 - ▶Ge検出器効率 1/10
 - ▶片側のGe検出器の計数率:

 $10^7 \times 10^{-1} \times 10^{-2} \times 10^{-1} = 10^3 \text{ cps}$

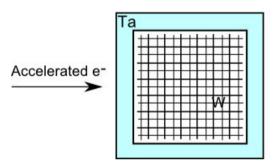
▶同時係数率: 10³ x 10⁻¹ = 10² cps

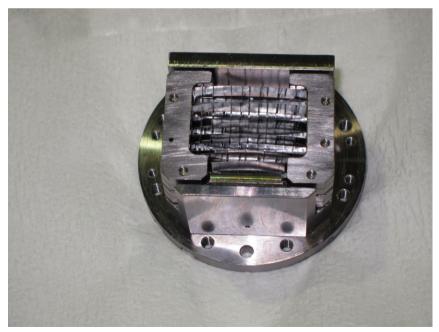

(CDBに比べ、パルス化の効率分のみの減少)



cERL低速陽電子ビームの強度予想

- 現在の入射器テストリニアック
 - > 55MeV, 500W, \rightarrow 5x10⁷ e⁺/s
- cERLビームダンプ利用
 - \gt 5MeV 10mA \rightarrow 50kW
 - ▶ 電力 100倍
 - 対生成効率 < 1/100
 (O'Rourke et al)
 </p>
- 他のSimulation例
 - > 5.5MeV, 0.2mA (1.1kW)




コンバータの放熱?

- 現在の低速陽電子実験施設のテストリニアック
 - ▶ 55MeV, 500W, コンバータ厚さ 4mm
- cERLビームダンプ利用の場合
 - ➤ 5MeV 10mA → 50kW (100倍)
 - ➤ コンバータ厚さ 2mm?
 - ▶放熱の方法??(これが唯一の開発要素)
- 5MeV → ターゲットが放射化しないことは、
 コンバータ/モデレータの開発に有利

Accelerated eSlow e+

現在のコンバータ /モデレータ

