High-Qを目指した窒素ドープの 試み

2015/9/29 ERL検討会 梅森健成

はじめに

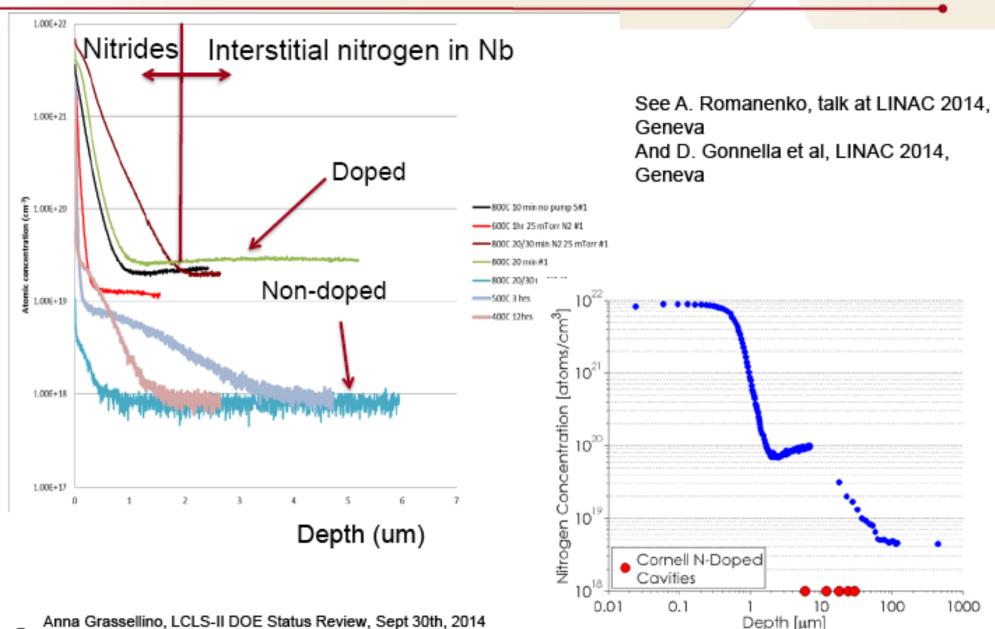
- FNAL, J-lab, Cornellなどでは、LCLS-IIIに向けて、窒素ドープのR&Dが盛んに行われている。
- ・単セル空洞、9セル空洞ともに2.0Kで3x10¹⁰程度のQ値が得られている。
- CW運転を行う超伝導空洞を用いた加速器においては、 2.0K付近で低負荷運転ができることは非常に魅力的である。
- ・KEKにおいても窒素ドープを試みてみる。

以下のメンバーの協力のもと、窒素ドープの研究を進めている。 超伝導空洞グループ:

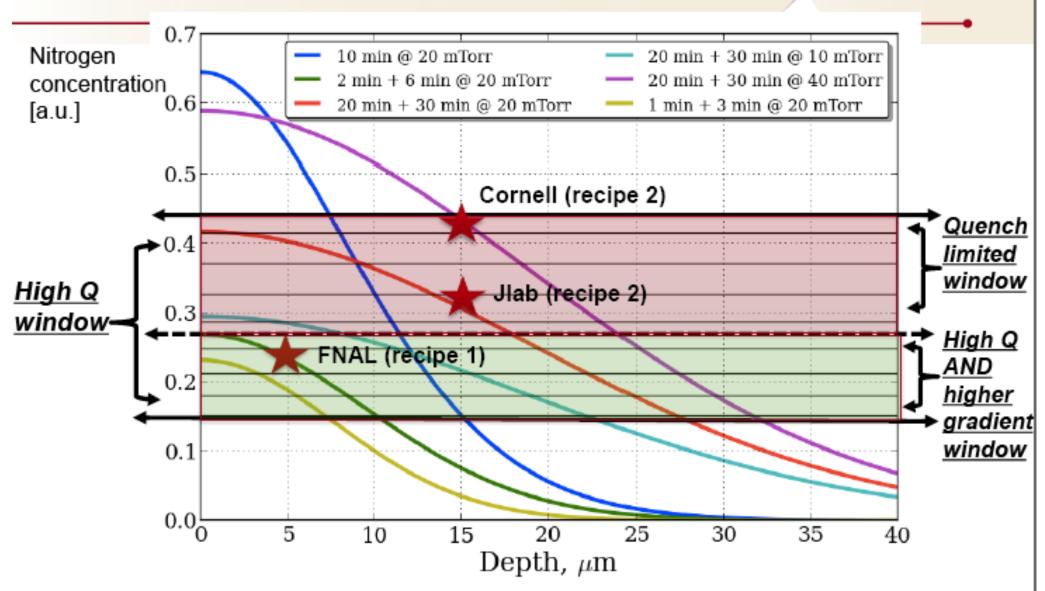
梅森、江木、加古、久保、許斐、阪井、篠江、清水、朴

機械工学センター: 井上、山中

三菱重工:仙入、奈良、原、柳澤


TTC meeting(2014/12月) Alex Melnychuk 「Update on N doping at Fermilab」より

One cryomodule milestone – avg Q (2K, 16 MV/m)~3.75e10, avg quench field ~22 MV/m



Best N doping recipe so far (high Q and highest gradients achieved on nine cells) is the one known as "Fermilab 2/6": 800C 3 hrs in HV, then 2 min @ 800C with ~ 25 mTorr N2, then 6 min @ 800C in HV + 5 microns EP

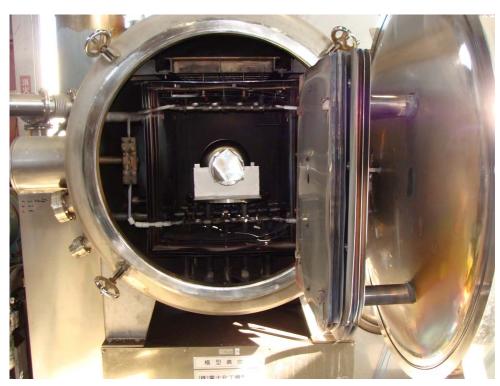
What does N treatment do? N depth profiles by SIMS

Post bake EP ideal target: High Q with higher gradients window studies at FNAL

- Final recipe needs to be in the green window to obtain high Q with the higher quench fields
- Fermilab recipe already good enough for LCLS specs
- With more work we may do even better

<u>LCLS-IIの仕様(空洞処理)</u>

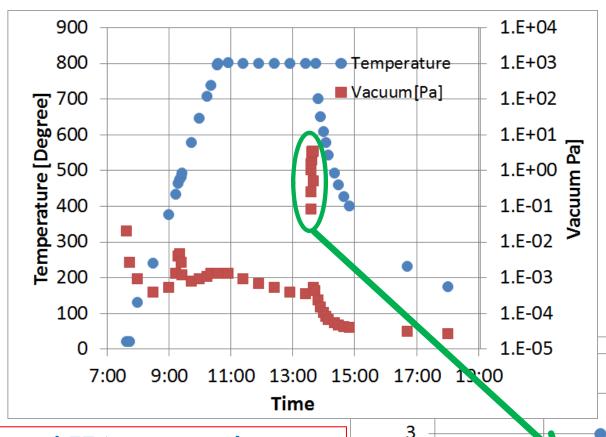
- 1. 空洞製造完了
 - ✓ 20-25°Cのセル温度で110umのEP
 - ✓ Pre-tuning, 内面検査、形状検査
- 2. 超音波洗浄&超純水洗浄
- 3. 袋詰めして、アニールの場所へ
- 4. アニール(N2 dope)
- 5. 内面検査&field flatness確認
- 6. EP(セル温度: 20-25℃, 5-30um)
- 7. 超音波洗浄(脱脂)&超純水洗浄
- 8. HPR
- 9. 部品洗浄 ⇒ アセンブリ、リークチェック
- 10. (Heジャケット溶接)
- 11. 形状測定&周波数測定
- 12. 輸送


N-dope: parameter 1 (FNAL)

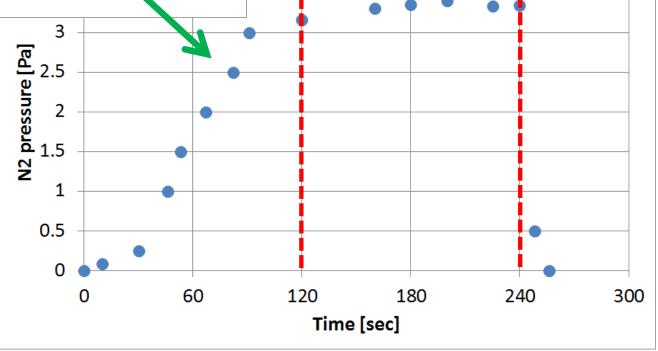
800deg, 3h + 3.3Pa N-dope, 2min + 800deg, 6min

小型真空炉での窒素ドープ作業

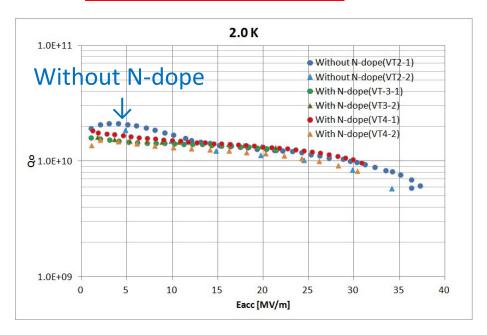
- R-2(Fine grain単セル)空洞に、窒素ドープを施した
- 機械工学センターの単セル空洞用小型炉にて実施
- 真空度によるヒーターのインターロックは殺した状態で、今回 一連の作業を行った。
- ・窒素導入は、真空度をモニターしながらマニュアルバルブに て行った。

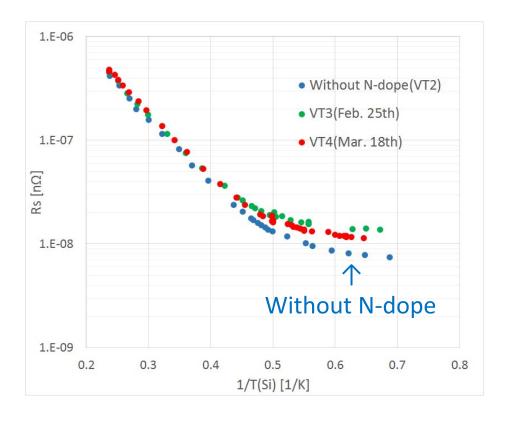

窒素導入の様子

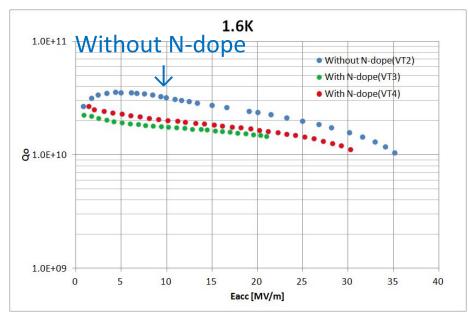
- 真空度をモニターしながら、マニュアルバルブを操作して、ドープする窒素の圧力を制御する
- Diffusion pumpで引きながら(クライオポンプはない)窒素導入を行っている。



1st N-dope (light doping)

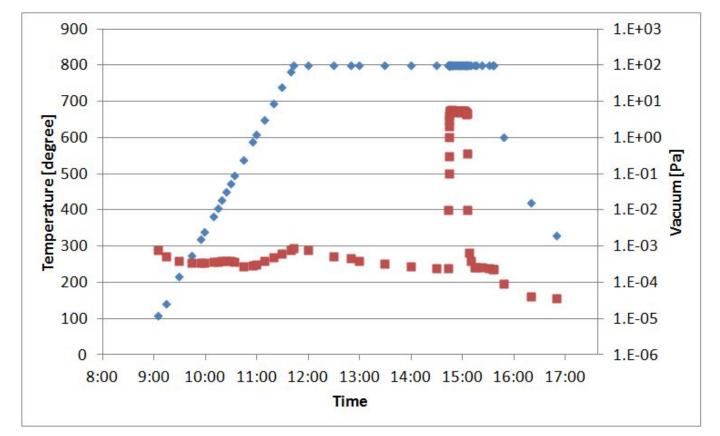

- •800度で3時間キープ
- ・窒素ドープ
 - -- 約2分で安定状態へ
 - -- 2分間3.3Paをキープ
 - -- バルブclose後は数秒 で真空下がる
- -800度で6分キープ
- ・ヒーターOFFして自然降温




東京電解Fine grain単セル空洞の履歴

Date	Process	Details
2014/7	EP-1	100um
2014/7	Anneal	750deg, 3h
2014/8	EP-2(1)	20um EP-2, PR, Assembly, Baking(140deg, 48hours)
2014/9/4	VT(1)	
2015/1	EP-2(2)	20um EP-2, PR, Assembly, Baking(140deg, 48hours)
2015/1/22	VT(2)	Confirm Eacc and Qo
2015/2/9	N-dope(1)	800deg, 3h + 3.3Pa N-dope, 2min + 800deg, 6min
2015/2/17	EP-2(3)	5um EP-2, HPR, Assembly
2015/2/25	VT(3)	
2015/3/10	EP-2(4)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)
2015/3/18	VT(4)	

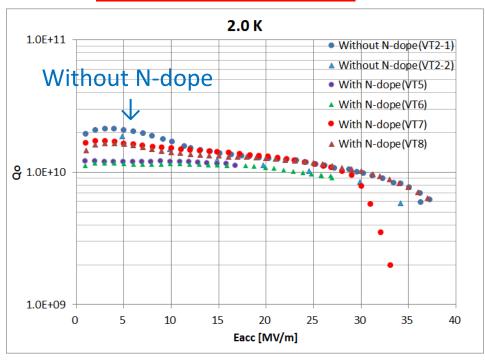
縦測定結果

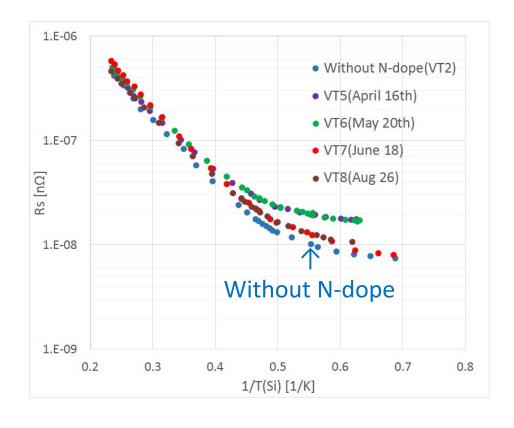

- •窒素ドープの後、5um + 10umのEP-2 をして2回の縦測定を行った。
- ・Q値は劣化してしまい、窒素ドープ無しの性能を超えることはできなかった。
- Quench fieldは下がった。22MV/m & 30MV/m。(他の研究所の窒素ドープの結果とconsistent)

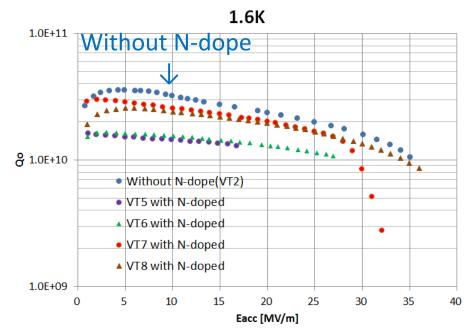
N-dope: parameter 2(Cornell)

800deg, 3h + 5.5Pa N-dope, 20min + 800deg, 30min

2回目の窒素ドープ


- FG単セル空洞を使用(1回目の窒素ドープと同じ空洞)
- 今回も小型真空炉にて窒素ドープを行った。
- 2回目の窒素ドープではdeep dopingと呼んでいるCornellのパラメーターに近い物を採用
- 800度 3時間(真空) + 20分ドープ(800度 5.5Pa N2) + 800度 30分(真空) → 自然冷却




東京電解Fine grain単セル空洞の履歴

Date	Process	Details
2015/2/9	N-dope(1)	800deg, 3h + 3.3Pa N-dope, 2min + 800deg, 6min
2015/2/17	EP-2(3)	5um EP-2, HPR, Assembly
2015/2/25	VT(3)	
2015/3/10	EP-2(4)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)
2015/3/18	VT(4)	
2015/4/3	N-dope(2)	800deg, 3h + 5.5Pa N-dope, 20min + 800deg, 30min
2015/4/7	EP-2(5)	15um EP-2, PR, Assembly, Baking(140deg, 48hours)
2015/4/16	VT(5)	
2015/5/11	EP-2(6)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)
2015/5/20	VT(6)	
2015/6/9	EP-2(7)	10um EP-2, PR, Assembly
2015/6/18	VT(7)	
2015/8/18	EP-2(8)	10um EP-2, PR, Assembly, Baking(140deg, 48hours)
2015/8/27	VT(8)	

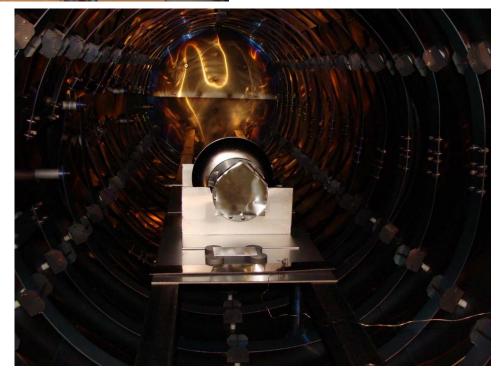
縦測定結果

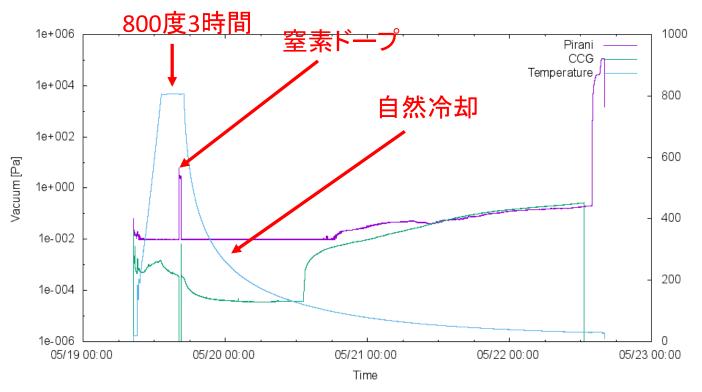
- ・窒素ドープの後、15um + 10um + 10um + 10um + 10umのEP-2をして4回の縦測定を行った。
- ・今回もQ値は劣化。窒素ドープ前の性能を超えることはできなかった。
- ・Quench fieldはやはり下がって、最初は17MV/m。EPをやるごとに回復。
- •Quenchの場所は毎回異なる。

N-dope: parameter 3

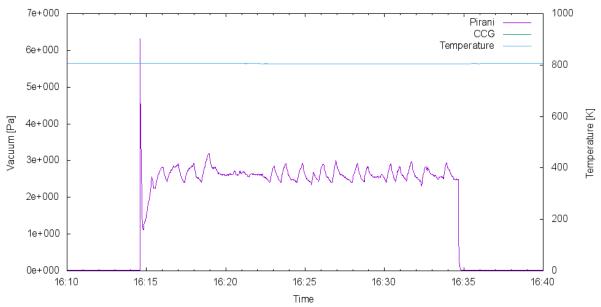
800deg, 3h + 2.7Pa N-dope, 20min + 800deg, 30min

3回目の窒素ドープ(今回は大型真空炉)



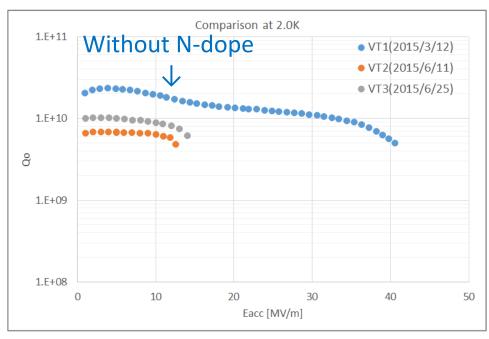

窒素導入用バルブ

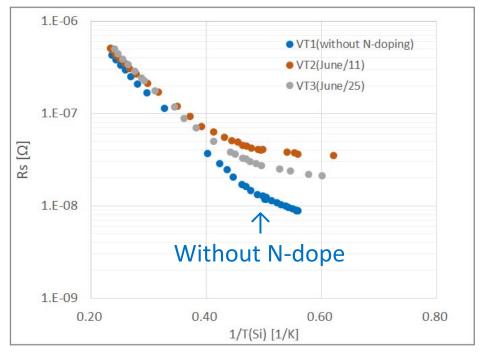
- •マニュアルバルブ
- ・Variable leak valve (PCでの遠隔制御)

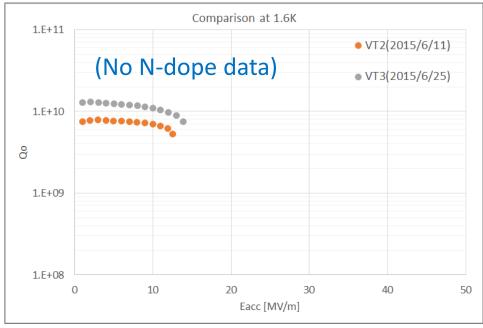


<u> 窒素ドープの様子(5/19~5/22)</u>

- ・3時間アニール後
- •20分窒素導入(~2.7Pa)
- ・30分800度キープ
- •自然降温


- •入れ始めに多少もたついた
- 2.7Paに到達するまでに約1 分かかってしまった。(目標 10秒)




ULVAC Fine grain単セル空洞の履歴

Date	Process	Details
2015/2/12	EP-1	100um
2015/2	Anneal	750deg, 3h
2015/3/3	EP-2(1)	20um EP-2, HPR, Assembly, Baking(140deg, 48hours)
2015/3/12	VT(1)	Confirm Eacc and Qo
2015/5/19	N-dope(1)	800deg, 3h + 3.3Pa N-dope, 2min + 800deg, 6min
2015/6/2	EP-2(2)	15um EP-2, HPR, Assembly, Baking(140deg, 48hours)
2015/6/11	VT(2)	
2015/6/16	EP-2(3)	15um EP-2, HPR, Assembly, Baking(140deg, 48hours)
2015/6/25	VT(3)	

<u> 縦測定結果</u>

- ・窒素ドープの後、15um + 15umのEP-2 をして2回の縦測定を行った。
- 今回は更にひどくQ値が劣化。1x10¹⁰ に届くか届かないか。
- Quench fieldは13MV/m。
- •2回目のEPで、Q値、quench fieldともに少しだけ回復。
- •Quenchの場所は、今回はほぼ同じ。

考察

窒素ドープで良い結果が得られていない原因としては以下の2つが考えられる。

1. 二オブ表面が正しく窒素ドープされていない。

- ▶真空炉の真空ポンプの違い(KEKはdiffusion pump、他の研究所は cryopump)

2. 縦測定クライオスタットの環境磁場を拾っている。

- 窒素ドープの空洞は、環境磁場に対しsensitiveと言われている。(冷却時に通常のドープ無しのEP空洞と比較して数倍の磁場をトラップする)
- このsensitivityは冷却速度(slow / fast cooling)にも依存する。
- ・ KEKの縦測定クライオスタットの磁場の測定値は十数mG。通常のEP空洞での $10n\Omega$ 弱に相当する。

今後の対策

- ・窒素ドープしたNbサンプルの表面分析
 - ➤GDS(glow discharge spectrometer)という手法で表面分析を行ったが、感度が足りなかった。
 - ▶より感度の高い分析手法にて、表面分析を行う。
- KEKで窒素ドープした空洞の海外の研究所での測定
 - ▶FNALおよびJ-labで測定をしても良いとの回答をもらった。
 - ▶良い磁場環境下での性能評価を行う。
- KEKの縦測定エリアの改善
 - ▶まずはモニター類の増強。Flux gate sensor(磁場測定)、温度センサーなど。

 - ▶冷却手法の確立。
 - ▶縦測定に用いている治具等の見直し。

まとめ

- FNAL, J-lab, Cornellなどで行っている窒素ドープの手法を再現すべく、
 KEKにおいても窒素ドープを試みた。
- ・機械工学センターの単セル用小型真空炉と9セル空洞用大型真空炉に、窒素ドープ用のシステムを構築し、窒素ドープを行った。
- 導入する窒素の量・時間を変えた3つの条件下での窒素ドープを行った。
- 窒素ドープ後EPで表面を削り、縦測定を行った。
- Q値は窒素ドープ前より劣化してしまい、2.0Kで3x10¹⁰のような高いQ 値を得ることはできなかった。
- Quench fieldは窒素ドープの特徴を良く再現しており、ドープすると下がって、EPをすると回復していく様子が見られた。
- ・ また、Quenchする場所(発熱箇所)は、測定ごとにほとんどばらばらであった。
- Nbサンプルでの表面分析、良い磁場環境での性能評価、KEKの縦測 定システムの改善などを、引き続き行っていく。