全体設計・ 到達目標と達成度[抜粋]

高エネルギー加速器研究機構 加速器研究施設 中村 典雄

2017年10月27日 コンパクトERL評価専門委員会

- 1. cERLの概要
- 2. 入射部
- 3. 周回部
- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

- 1. cERLの概要
- 2. 入射部
- 3. 周回部
- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

既要

目的: (1)ERL光源性能(大電流、低エミッタンス、短バンチ等)の実証 (2)鍵となる要素(電子銃、超伝導空洞等)の開発と安定な運転 (3)性能達成に関係するビームダイナミクスの研究 利用実験:(1)レーザー・コンプトン散乱X線発生実験 (2)コヒーレントテラヘルツ光発生実験 現状 20 MeV運転 2013年 建設完了 ビームダンプ ダンプライン 主リニアック パラメータ 設計値 ビームエネルギー 35 MeV (20 MeV) 合流部 入射エネルギー 5.5 MeV (2.9 MeV) ビーム電流 10 mA (7.7 pC @1.3 GHz) 入射リニアック ~ 0.3 mm·mrad (7.7 pC) 規格化エミッタンス 光陰極DC電子銃 ~1 mm·mrad (77 pC) ©Rey. Hor i/KEK 1-3 ps (通常運転) バンチ長 ~100 fs (バンチ圧縮) 当面の目標:1 mm·mrad @ 10 mA RF周波数 1.3 GHz

ERL開発棟

KEK cERL建物(ERL開発棟)内配置

cERL加速器

cERL加速器室 と関係者

1. cERLの概要

2. 入射部

3. 周回部

- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

入射部の配置・構成

入射部+入射診断ビームラインの構成要素と役割

- 電子銃+励起レーザー --- 大電流・低エミッタンスビームの生成
 - ソレノイド電磁石 --- 空間電荷効果の補正
- バンチャー空洞 ---
- 入射加速空洞
- 四極電磁石(5連)
- モニタ類
- 入射診断ビームライン

- --- 空间電何効果の補止 --- バンチ長の調整
- --- ビームの加速(最大6 MeV)
- --- ビームの収束、合流部との整合
- --- ビームプロファイル、ビーム位置、電流の測定

cERL入射部・入射診断ラインの配置・構成

入射部の設計と最適化(1)

入射部設計の基本設定

- ・ カソード: NEA-GaAs
- ・レーザー波長: 532 nm
- 電子銃電圧: 500 kV
- 入射エネルギー: 5.5 MeV
- 初期エミッタンス ε_{nx} =0.13 mm·mrad @ $\sigma_{x,L}$ =0.275 mm, $< E_{kx}$ >=60 meV

$$\varepsilon_{nx} = \sigma_{x,L} \sqrt{\frac{2\langle E_{kx} \rangle}{mc^2}}$$

 ε_{nx} : normalized emittance $\sigma_{x,L}$: laser spot size (rms) $\langle E_{kx} \rangle$: mean transverse energy

- トラッキングコードGPTと遺伝的アルゴリズムによる最適化
 - 第1段階: 80 pC/bunchでの最適化 →入射部機器の位置決定
 - ・第2段階: 7.7 pC/bunchでの最適化 → 10 mAでのパラメータ値決定

入射部の設計と最適化(2)

入射部シミュレーション結果(7.7 pC/bunch)

cERL入射部から主空洞出口までの配置・構成 当面の目標 (1 mm·mrad @ 10 mA)は実現可能

最適化された入射部構成要素パラメータ(7.7 pC/bunch)

Parameter	Value	
Gun DC voltage	500 kV	
Beam energy of injector	5.5 MeV	
Charge/bunch (Current)	7.7 pC (10mA)	
Full width of laser pulse	16 ps	
Spot diameter of laser	0.525 mm	
Magnetic fields of solenoids #1, #2	0.036, 0.015 T	
Voltage of buncher cavity	105 kV	
Field gradient of cavity 1, 2, 3	6.8, 7.53, 7.03 MV/m	
Phase of cavity 1, 2, 3	29.9, -9.8, -10.0 deg	

ビームパラメータ(主空洞出口、7.7 pC/bunch)

parameter	2 k particles	100 k particles	
$\epsilon_{nx} \; (\text{mm·mrad})$	0.262	0.307	
$\epsilon_{ny} \; (\text{mm·mrad})$	0.261	0.361	
$\sigma_z \ ({\rm mm})$	0.846	0.873	
γ	69.5014	69.497	
σ_{γ}	0.0290783	0.0192432	
β_x (m)	2.67319	2.59521	
β_y (m)	2.11744	2.03121	
α_x	-0.601	-0.945	
$lpha_{m{x}}$	-0.179	0.305	

- 1. cERLの概要
- 2. 入射部
- 3. 周回部
- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

周回部の配置・構成

周回部の構成要素と役割

- --- 周回・入射ビームの合流 入射シケイン・合流部
- --- ビーム加速、エネルギー回収 主超伝導空洞
- --- ビーム周回、周長補正、バンチ圧縮・伸長 アーク部
- 周長補正シケイン
- LCS衝突点·収束部
- ダンプシケイン
- ビームダンプ

- 周長補正 ---
- --- 電子ビーム収束とレーザーとの衝突
 - --- 加速・減速ビームの分岐
 - --- 減速ビームの廃棄

cERL周回部(入射部含む)の配置・構成

アーク部の設計と最適化 (1)アーク部におけるコヒーレント放射光(CSR)の影響 インコヒーレント放射($\sigma_r > \lambda_{nh}$) アーク部 $N_{ph} \propto N_e$ バンチ 雷子バンチ コヒーレント放射($\sigma_z < \lambda_{ph}$) CSR $N_{ph} \propto N_e^2$ バンチ後方のCSRが前方に影響を与える 強い雷磁場 N_e:電子数 N_{ph}:光子数 → 運動量幅、エミッタンスの悪化 短バンチ長・高電荷で強いCSR発生 CSRの影響を抑制するオプティクス設計 (2)縦方向分散の制御(バンチ長の制御) TBA(Triple-Bend Achromat)ラティスの採用 $=\int_{arc}\frac{\eta_x(s)}{\rho}ds$ 3 $= 2\eta_{\rm m}\sin\theta + 4\rho(\theta - \sin\theta)$ → R₅₀を正・負・ゼロに変えられる ρ : Bending radius Entrance Exit θ : Bending angle E $\eta_{\rm m}$: Dispersion function at arc center η_x [m] \mathfrak{A}^{10} $\hat{\beta}_{x}$ Q4 Q5 Q6 B1 Q1 Q2 Q3 B2 **B**3 B4 0 *R*₅₆=0: バンチ長一定(等時性) -10 *R*₅₆>0,*R*₅₆<0: バンチ圧縮, バンチ伸長 -20 -2 0 2 8 3 5 6 $\Delta z (= c\Delta t) = R_{56}\delta + T_{566}\delta^2 + U_{5666}\delta^3 + \cdots \quad \left(\delta = \frac{\Delta p}{n}\right)$ s [m] アーク部のオプティクス(R₅₆=0の場合)

周回部オプティクス

ビーム品質の保持

周回部でCSRなどによる初期ビーム品質の劣化はほとんどない。

利用実験

バンチ圧縮モードのオプティクス設計

コヒーレントTHz光発生実験運転モード(バンチ圧縮モード)

磁気的バンチ圧縮による短バンチ生成

- 1) 主空洞off-crest加速 → 時間(縦方向位置)と運動量の相関の生成
- 第1アーク部(R₅₆>0, T₅₆₆>0) → 縦方向分散によるバンチ圧縮
- 3) 第2アーク部 $(R_{56} < 0, T_{566} < 0) \rightarrow$ 圧縮されたバンチの伸長 (復元)
- 4) 主空洞off-crest減速 → 時間(縦方向位置)と運動量の相関の解消 R_{56} :四極電磁石による調整 T_{566} :六極電磁石による調整 動道트の運動量美による恋化 $A_{7-6}A_{1-R} \delta + T \delta^{2}$

軌道長の運動量差による変化 $\Delta z = c\Delta t = R_{56}\delta + T_{566}\delta^2 + \cdots$

バンチ圧縮・復元シミュレーション

- 1. cERLの概要
- 2. 入射部
- 3. 周回部
- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

ビームサイズとアパーチャ

cERL加速器室(放射線遮蔽)

ERL開発棟の床耐荷重 → コンクリート厚: 側面 1.5 m, 天井 1.0 m

ビーム損失率の目標・目安: <10⁻⁶(ビーム損失 <10 nA @ 35 MeV, 10 mA) → 真空ダクトのアパーチャ A_{x,y}>ビームサイズの5倍 5σ_{x,y}(ガウス分布仮定)

 $\sigma_p/p=2x10^{-3}$, $\varepsilon_{nx}=\varepsilon_{ny}=10$ mm·mradでも $A_{x,y}>5\sigma_{x,y}$ を満足する。

ビームハローとコリメータ設置

- ビームハロー
 - ・ 電子銃、空洞電界放出、Touschek&残留ガス散乱などに起因して発生
 - 他施設での観測例

コリメータ

- ・ビームハローの除去とビーム損失の局在化
- 入射部2ヶ所(コリメータ#1,#2)
- 周回部3ヶ所(コリメータ#3,#4,#5)

ビームハロー@J-LAB

主空洞電界放出電子の損失

主空洞電界放出電子の損失分布シミュレーション(Eacc=15 MV/m)

- 1. cERLの概要
- 2. 入射部
- 3. 周回部
- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

目標値と達成値(入射部)

Parameter	Achievement	Target value	Remark
Beam kinetic energy T	5.6 MeV (typ.), 5.9 MeV (max.)	5 MeV	achieved
DC voltage for DC gun	500 kV 450 kV in operation	500 kV	achieved almost achieved
Injector accelerating gradient	7 MV/m	7 MV/m	achieved
Normalized emittance (Low bunch charge 1)	<mark>≈ 0.07 mm·mrad</mark> (@~0.01 pC/bunch, <i>T</i> =390 keV)	∼ 0.1 mm·mrad	achieved
Normalized emittance (Low bunch charge 2)	≈ 0.17 mm·mrad (@0.02 pC/bunch, T=5.6 MeV)	∼ 0.1 mm·mrad	almost achieved
Normalized emittance (Medium bunch charge)	<mark>≈ 0.8 mm·mrad</mark> (@7.7 pC/bunch, <i>T</i> =5.6 MeV)	1 mm·mrad (1 st target) ~ 0.3 mm·mrad (design)	achieved still not achieved
Normalized emittance (High bunch charge)	1.5~3 mm·mrad (@40 pC/bunch)	1 mm·mrad	still not achieved
Momentum spread	< 10 ⁻³ (< 1 pC/bunch) (1.5 - 2.5)×10 ⁻³ (@7.7 pC/bunch)	≤ 10 ⁻³	achieved still not achieved

目標値と達成値(周回部)

Parameter	Achievement	Target value	Remark
Beam energy $E(E_{inj})$	20 MeV (2.9 MeV)	35 MeV (5.5 MeV)	still not achieved
ML accerating gradient	8.3 MV/m	15 MV/m	still not achieved
Average current	1 mA	10 mA	still not achieved
Normalized emittance (Very low bunch charge)	<mark>≈ 0.13 mm·mrad</mark> (@~0.05 pC/bunch)	∼ 0.1 mm·mrad	achieved
Normalized emittance (Medium bunch charge)	1.0 - 1.6 mm⋅mrad (@7.7 pC/bunch)	1 mm·mrad(1 st target) ~ 0.3 mm·mrad (design)	almost achieved still not achieved
Normalized emittance (High bunch charge)	2 - 10 mm·mrad (@40 pC/bunch)	1 mm·mrad (@77 pC/bunch)	still not achieved
Momentum spread	1.2 × 10 ⁻⁴	~ 10 ⁻⁴	almost achieved
RF amplitude stability (ML)	0.003 %	≤ 0.01 %	achieved
RF Phase Stability (ML)	0.0090 – 0.0094 °	≤ 0.01 °	achieved
Momentum jitter	3 × 10⁻⁵	< 10 ⁻⁴	achieved
Bunch length (compression)	~ 0.25 ps @ 2pC/bunch	0.1 ps @ 7.7 pC/bunch	still not achieved

ML: main linac

- 1. cERLの概要
- 2. 入射部
- 3. 周回部
- 4. ビーム損失
- 5. 到達目標と達成度[抜粋]
- 6. まとめ

まとめ

- cERLでは、入射部、周回部共に輸送中のビーム品 質の劣化を抑えるように最適化設計を行った。
- 3つの運転モード(通常運転、LCS、バンチ圧縮)に 対応できる設計とした。
- ビーム損失を抑えるべく真空ダクトのアパーチャを決定し、コリメータと局所的な追加遮蔽による効率的な 放射線対策を施した。
- 多くのパラメータで目標値を達成している。他方、達成度がまだ十分でなく、ビーム調整や技術開発などが必要なものもある。