cERL評価専門委員会 (2017年 10月 27日)

超伝導空洞開発

梅森健成、江木昌史、江並和弘、阪井寛志、古屋貴章 許斐太郎、宍戸寿郎、加古永治(KEK) 沢村勝(QST)

本日の報告内容

1. cERL超伝導空洞システムの概要 2. 入射クライオモジュールの運転状況 3. 主加速クライオモジュールの運転状況 4. 達成された成果と今後の課題 5. まとめ

Superconducting RF Cavity system in cERL

cERL injector cryomodule

cERL main linac cryomodule

Cool-down cycles of injector & main linac cryomodules

Year	2012	2013	2014	2015	2016	2017
Assembly of Injector Cryomodule	4 6					
1 st cool-down	9	Low RF power	tests of Injector	Cryomodule		
2 nd cool-down		1 High RF po	ower tests of Inj	ector Cryomodu	ıle	
3 rd cool-down		4 B	eam commissio	ning		
4 th cool-down		570	f Injector sectio	n at 5 MeV		
5 th cool-down		11	High RF pow Beam comm	ver tests of Main issioning of Ma	n Linac Cryomod in Linac section	ule at 20 MeV
6 th cool-down		:	1 3 Bean Demo	n commissioning onstration of er	g of Re-circular r lergy recovery	ing
7 th cool-down			4 6 Be	eam operation a	t 20 MeV, ~10 μ	Α
8 th cool-down			÷	1 4 LCS exp	eriments	
9 th cool-down	В	eam operation	at 20 MeV, ~100	56 μΑ		
10 th cool-down		Beam	operation at 20) MeV, ~1 mA	1 3	
11 th cool-down		Beam operatio	on at <mark>20 MeV, ~</mark> 4	<mark>40рС (</mark> 162.5МН	z, 200nsec/5Hz)	1 3

Injector Cryomodule

- High power tests
- Beam operation
- Long term cavity performance
- Unexpected discharge phenomenon
- Performance recovery

by high power pulsed RF conditioning

Design values and achieved results

High power tests of injector cryomodule

Beam operation of injector cryomodule

History of thermal cycles in May-July, 2013 Temperature of He jacket 300K cool-down warm-up 240 one week 200 ang 160 weekend night 140k **120** 80 40 2013-05-07 2013-05-12 2013-05-18 2013-05-24 2013-05-30 2013-06-05 2013-06-11 2013-06-17 20 3-06-23 2013-06-29 2013-07-07 00:00:00 2013' 00:00:00 2013 Time at 2K May,07 -CAV1 -CAV2 -CAV3 July,07

Eacc [MV/m] Conditioning of cavities Beam operation (8 hours) Total Vc = 5.0 MV Cavity-1: 7.1 MV/m, 2.8 kW Cavity-2: 7.5 MV/m, 9.4 kW Cavity-3: 7.1 MV/m. 8.7 kW 18:30 19:30 20:30 21:30 2013-06-14:30 June, 12 June, 12 12:00 24:00 Eacc [MV/m] Conditioning Beam operation (7 hours) of cavities Total Vc = 4.8 MV Cavity-1: 6.8 MV/m, 2.6 kW Cavity-2: 7.3 MV/m, 8.8 kW Cavity-3: 6.8 MV/m, 8.1 kW 2013-06-21 15:00 June 21 June, 22 14:00 01:00

Operating accelerating gradient (Eacc)

Long term cavity performance in injector cryomodule

X-ray of individual cavity operation at 7 MV/m

Observation of x-ray radiation in 2013-2017

Unexpected vacuum discharge phenomenon

Performance recovery by high power pulsed RF conditioning

Summary of design values and achieved results

Injector Cryomodule	Design	Result	
Static heat load at 4.2 K	33 W	36 W	
Static heat load at 2 K	11 W	14 W	
Dynamic heat load at 2 K (7 MV/m per cavity)	< 1.0 W	8.5 W	
Qo at 2 K (7 MV/m)	> 1.0 x 10 ¹⁰	1.8 x 10 ⁹	
Operating total Vc	5 MV	5 MV	
Conditioning RF power at RT		40 kW	
Operating RF power at 2K		10 kW	
Tuner stroke	> 500 kHz	600 kHz	
Piezo stroke	> 1 kHz	2 kHz	

Main linac Cryomodule

- HOM damped cavity design
- High power test of input couplers
- Performance test of tuner & HOM damper
- Typical one day operation of main linac
- Demonstration of energy recovery
- Cavity performance in VT and cryomodule test
- Long term cavity performance before 1 mA
- Performance recovery by pulse processing
- Trip statistics of ML cavities for 2 years

HOM damped cavity design for ML cryomodule

High power test of ML input couplers

ERL主空洞用の入力カプラー(cERL用カプラーのハイパワーテストとモジュール評価)

Performance test of ML cryomodule (tuner & HOM damper)

Typical one day operation of main linac

RF stability

Δ A/A(% rms) ~ 0.003, Δ θ (deg rms) < 0.01 deg

Demonstration of energy recovery in ML cryomodule

Cavity performance in VT and cryomodule test

Long term cavity performance of ML cavities before 1mA

We met Q degradation during beam operation. But <u>we kept same performance within error bars</u> <u>after degradation from May 2014 to March 2015 and no trip was observed for 1.5 months, even if</u> <u>no pulse processing</u> was applied in 2015. So in 5th phase in May – June 2015, one cavity of ML1 increase the field from 8.57 MV to 10MV operation to survey how much field could be operated for a long time. Finally, in 5th phase, we successfully operate 10MV field in ML1 cavity.

- In 2016, we continued 10MV operation to keep this field during 1mA operation.
- And we tried pulse processing to improve cavities performances more.

Performance recovery by pulse processing in ML cavities

Trip Statistics of Main Linac cavities for 2 years

4th & 5th phase we did not apply pulse processing. But/we had no trip for 1.5 month in 4th phase.

達成された成果と今後の課題:

● 入射超伝導空洞

● 主超伝導空洞

達成された成果と今後の課題(1):入射空洞

Components	評価	対応 ・ 対策
Cavity	O (stable)	
Field emission (x-ray)	$\times \rightarrow \Delta$	空洞性能回復手段 の確立
Tuner	O (stable)	
Input coupler	O (<10 kW → 100kW)	テストスタンドでの 試験
HOM coupler	O (stable)	
HOM RF feedthrough	× (改良必須)	横型クライオでの 試験
Static heat load	Δ	低減のための改善の 余地あり
Dynamic heat load	Δ	低減のための改善の 余地あり
Q _{HOM} , HOM power	Δ	電流増加での観測
Beam operation	O (stable)	電流増加での検証

Off-line tests of RF feedthroughs in horizontal cryostat

達成された成果と今後の課題(2): 主空洞

空洞

- ➢ HOM-BBU抑制のため、HOM減衰型空洞を設計
- ▶ 表面電場が大きくなりField emissionが問題に
- HOM減衰器
 - ▶ 1mA運転での問題はなし。 (ただし、クラックが入るなどの製作上の問題がある。)

• 入力カップラー

- ▶ 設計値のCW 15kWまで、投入可能であった。
- 周波数チューナー

▶ ビーム運転中、問題無く周波数調整がなされていた。

クライオモジュール

 クライオモジュールとして、ビーム運転までうまくもっていけた。

【課題】

- 劣化を起こさないアセンブリ技術の開発
- 劣化した空洞を回復させる技術の開発→
- 量産化に向けた対応

He processing at low temperature Ne plasma processing at room temp. High power RF pulsed processing

達成された成果と今後の課題 (3)

まとめ

- 入射空洞での熱損失の低減、主空洞でのビーム
 エネルギーの増強が主たる改善点ではあるが、
 安定なビーム運転に対しては大きな実績となった。
- 将来のEUV/FELへの応用に関して、幾つかの 考えられる今後の課題について、その解決策に 対応した共同研究をもとにして、すでにR&Dに 着手している。
- 世界で唯一稼働しているERLであるcERLの継続 的なビーム運転は、将来の加速器計画にとって、 必要不可欠な経験と実績を生み出すことを認識 して頂きたい。

Thank you for your attention.