cERLのRFシステム

〇三浦, 明本, 荒川, 片桐, 竹中, チュウ, 福田, 松下, 中尾, 中島, 松本, 道園, 矢野

RF源に対する要求性能と開発目標

空洞電場に対する要求安定度

振幅:0.1%rms, 位相:0.1deg.rms for cERL

振幅: 0.01%rms, 位相: 0.01deg.rms for 3GeV-ERL

<開発目標>

100mA運転に向けた300kWクライストロンの導入 → ○

電圧安定度が0.5%p-p以下となるクライストロン電源の導入 → △

大電力高周波系

低出力時に高効率が期待されるIOTの導入 → × RF源としての16kW半導体アンプの導入 → 〇

サーキュレータ、導波管移相器を含む導波管系の構築 →○

低電力高周波系

デジタルLLRFフィードバック制御システムの構築 → ORFフィードバック+チューナー制御

高速なRFインターロックシステムの構築 → ○

温度などによる位相ドリフトなどの軽減 $\rightarrow \triangle$ 入射器(β <1)における空洞のベクターサム運転

大電力高周波系 (HLRF)

Current Status of High Power RF Sources

	Buncher	Inj-1	Inj-2	Inj-3	ML-1	ML-2
Cavity	NC	2cell-SC	2cell-SC	2cell-SC	9cell-SC	9cell-SC
Cavity Voltage	114 kV	0.7 MV	0.7 MV	0.7 MV	8.6 MV	8.6 MV
Field Gradient (Desgin)		3 MV/m (7.5MV/m)	3MV/m (7.5MV/m)	3MV/m (7.5 MV/m)	8.6 MV/m (15MV/m)	8.6 MV/m (15MV/m)
$Q_{ m L}$	1.1×10^5	1.2×10^{6}	5.8×10^{5}	4.8×10^{5}	1.3×10^{7}	1.0×10^{7}
Cavity Length	0.068 m	0.23 m	0.23 m	0.23 m	1.036 m	1.036 m
RF Power @Low beam current	3 kW	0.53 kW	2.6	6 kW	1.6 kW	2 kW

The "vector-sum" operation in low energy region, β <1, has some difficulties.

-> transit time change -> RF phase change

300 kW CW Klystron (Toshiba E37750)

項目	設計値	動作値(270kW)	動作値(300kW)
動作周波数	1300MHz	1300MHz	1300MHz
ヒータ電圧	12V 以下	10.5V	10.5V
ヒータ電流	20A 以下	14.5A	14.5A
ビーム電圧	52kV 以下	48kV	$49.5 \mathrm{kV}$
ビーム電流	11A 以下	9.36A	9.75A
飽和出力電力	270kW 以上	278kW	305 kW
飽和入力電力	40W 以下	34W	34W
ビームパービアンス	0.89μ P	0.89μ P	0.89μ P
動作効率	50%以上	61.9%	63.2%
電力利得	38dB 以上	39.1dB	39.5dB

350 300 ◆ Eb=39 Eb=40 リニア領域 Eb=41 250 を使用 Eb=42 *- Eb=43 (kg) 200 150 ◆ Eb=44 --- Eb=45 Eb=46 Eb=47 100 Eb=48 Eb=49 50 Eb=49.5 0 10 20 30 40 50 Pd(W)

図. 各ビーム電圧に対する飽和出力電力,効率及び利得の関係

図 1. 各ビーム電圧の入出力特性(f0=1300MHz)

300 kW CW Klystron用電源

500kVA · DC電源 (IDX)

• 仕様

出力電圧 30~52kV(最大)

動作定格 50kV

出力電流 最大11A

極性 負極性

出力電圧リップル 0.5% (P-P)以下

0.3%(P-P)目標

出力電圧安定度 上に同じ

入力電源 AC6.6kV、3相、50Hz

ガン放電時クライストロン許容注入エネルギー

20J以下

クライストロンヘヒータ電力を供給する為の

52kV耐圧の絶縁トランス内蔵

安定化回路 サイリスタ位相制御方式

ゲートトリガのノイズ対策後の電圧変動

出力電圧 出力変動

kV	%P-P
20	1.4
25	1.2
30	0.9
35	0.63
40	0.55

25kW Klystron/ 30kW IOT用電源

表1:電源の主な電気的仕様 (日本高周波)

DC -200V, 1A

DC 3.5kV

受電電圧 AC440V 電圧の安定化方式 スイッチング方式 -36kV (IOT) 最大出力電圧 -20kV (クライストロン) 1.6A (IOT) 最大出力電流 2.5A (クライストロン) 出力電圧のリップル 0.3% (p-p) 以下 出力電圧の安定度 0.3% (p-p) 以下 負荷短絡時の保護回路 クローバ回路 ヒーター電源 DC 10V, 30A

インバーター方式

グリッド電源

イオンポンプ電源

16 kW CW 半導体アンプ

R&K 16kW半導体アンプ(CA1300BW10-6372R)

出力電力 16 kW CW

高周波性能 1300MHz±5MHz (-1dB bandwidth)

带域内利得 66 dB ±1dB

利得平坦度 ±1 dB (出力1~16kWに対して)

位相平坦度 ±10°以内(出力1~16kWに対して)

効率 35% (16kW出力時)

冷却方式 水冷

8 kW CW 半導体アンプ (R&K)

地絡(漏えい電流)問題

構成

高周波増幅ユニット12台の電力合成 制御ユニット+ドライバアンプユニット 計14ユニット

施設部から地絡観測の連絡有 スタンバイモード →35 mAの地絡電流 高周波増幅モード →50 mAの地絡電流 が観測された。

上記は、3相200Vが分電盤側でΔ結線の1相接地になっていたために生じる漏洩電流であった。 (現在、漏電検知レベルを上げて対処)

Y結線(中点接地)の場合には、漏えい電流は発生しない。

因みに、KEK入射器施設は、Y結線。

今後、新たな電気設備を設ける場合は Y結線が望ましい。

高周波増幅ユニット内部の電源接続状態

荒川氏報告資料

高周波増幅ユニットは筐体に12台。

各ユニットにノイズフィルターと半導体リレーがある。 1相が接地されているため、バランスが崩れキャパシタンスを通して漏洩電流が発生。

ノイズフィルター1個当たり1.2mA => 約17 mA (14ユニット) 半導体リレーOFF時1ユニット当たり1.7 mA => 約20 mA (12ユニット) 半導体リレーON時1ユニット当たり2.7 mA => 約32 mA (12ユニット)

300kWクライストロン(INJ2, INJ3用)の導波管系

IJSC2 IJSC3

300 kW Klystron

Circulators(100kW用)

Phase Shifter

Flexible WG x2 + Ubend

Phase Adjustment between IJSC2 and IJSC3

導波管長を±30mm変更可能

WG650導波管 (0.1651 m x 0.08255 m)

管内波長: λg= 0.322217302 m

導波管1mmあたり、1.117 deg./mm

空洞の入力カップラー間距離:0.56m β=1とβ=0.992749(@3MeV)では、導波管長を5.7 mm程変更する必要有

入射器の加速エネルギーが変更される度、調整を行う。 ビームを見ながら微調する必要があるため、モーターによるリモート制御化を行った.

Inductive Output Tube (IOT)

30 kW CW IOT (CPI)

Photo of the CPI 30kW IOT(VKL-9130).

CPI社VKL9130 仕様

ビーム電圧	35 kV	
ビーム電流	1.35A	
グリッド電圧	- 80 V	
出力電力	30.5 kW	
入力電力	151 W	
利得	23 dB	
帯域(-1 dB)	3.5 MHz	
ヒーター電圧	9.1 V DC	
ヒーター電流	8.1 V DC	

EFFICIENCY VERSUS OUTPUT POWER

- 低出力時の効率が良いとされる
- 利得が低いため大きな前段アンプが必要
- コレクタは水冷だが、ボディーは空冷

これが非常に問題となる

IOTで見られた問題点①

RF出力が1 kW以下で発振が見られた。 出力によって発振周波数も異なる。

グリッド電圧などの変更が必要である可能性。 通常、IOT購入時にセットで電源も購入するのが 普通らしい。 運転途中に急に3dBゲインが落ちる 現象が頻発

(一度ゲインが下がるとその日は下がったまま)

ヒーター電流が少し高く設定されていた

ヒーター電流を

8.5A and 10.5V (89.25W)

から

8.1A and 9.1V (73.7W)

に下げることでゲイン急落の事象が無くなった。

ヒーターとグリッドの距離が近いため グリッドの温度が上がり、 グリッドが反れ曲がって距離が変わる ことが原因と考えられる

PASJ2016 MOP039

2017/10/27 cERL評価専門委員会"LOTの利得変動の経験とその対策"

IOTで見られた問題点② (L3社製)

20kW IOT (L3社 L-4445)

冬に測定した結果

出力パワーと位相がドリフトし、ゆっくりと大きく増減する。

熱の影響で空洞がデチューンし、出力が下がる。 出力が下がると空洞温度が下がり、チューン状態 となり出力が上がるためと考えられる。

季節(気温)によって、出力パワーが変化.

ホール内空調無:夏が30℃に対し冬は数℃

ボディーが空冷であるため、外気温の影響を受けやすい。

CPI社の方が安定であるので、 L3社のIOTの共振周波数が大きくずれている可能性有。

その他、L3のミスで納品後に発振が続いたが 国外メーカーのため技術者が見に来ることが無く、 解決までほぼ1年の時間がかかり、かなりの労力を割いた。 その他、L3社のIOTは真空性能も悪い。 (立ち上げ時のアウトガスが多い)

低電力高周波系 (LLRF)

Digital LLRF System

Digital LLRF System

MicroTCA

AMC(Advanced Mezzanine Card)

(Mitsubishi Electric TOKKI Systems Co.,Ltd.)

Total 11 boards are used for operation.

	BUN	lnj1	Inj2	Inj 3	ML1	ML2
RF FB board	FB0	FB1	FB2 (Ve	ec-sum)	FB4	FB5
Tuner board	TN0	TN1	TN2	TN3	TN4	TN5

FPGAの内部回路を変更するだけで、RFフィードバックと チューナー制御ボードの両方に使用可能 (設計では1枚で両方の制御を目指していた)

- Embedded Linux is working in the PowerPC on FPGA.
- Each board acts as an EPICS IOC.
- Data acquisition is performed through GbE bus on the backplane.

EPICS IOCの組み込み (→KEK小田切氏+三菱電機特機)

フィールドフィードバックコントロール

チューナー制御ボードのブロック図

Feedback Control: $\Delta \theta = \theta_f(Pf) - \theta_c(cav) => 0$

離調=0(on resonance)の状態で信号の位相キャリブレーションを行う

Performance of INJ2 & INJ3 vector-sum feedback

RFフィードバック無

 $\Delta A/A=0.97\%$ rms $\Delta\theta = 3.39 \text{ deg rms}$

RFフィードバック有

 $\Delta A/A=0.012\%$ rms $\Delta\theta = 0.022 \text{ deg rms}$

外乱による影響を1/100 まで抑制

LPF:100kHz適用時

Waveforms of ML Cavities

Field fluctuation by Michrophonics is stabilized by RF Feedback

Phase Noise Jitter Measurement

空洞pick-up信号の位相ノイズ測定 (Signal Source Analyzer: E5052B)

M.Egi, PASJ2016 (MOP025)

Vibrational state of "floor" around Main Linac

Vc Phase Noise with RF FB (10Hz-1MHz)=0.017deg Vc Phase Noise w/o RF FB (10Hz-1MHz)=0.73 deg

Microphonics is observed at 10 Hz - 500 Hz.

Phase noise by Microphonics was suppressed well by RF FB.

Phase noise of Vc with FB was almost the same as that of Master Oscillator.

空洞Grpによる振動対策前後のMicrophonics

9-cell SC cavity: $Q_1 = 10^7$

Field gradient 8.3 MV/m : Operation point

(15 MV/m: Design)

The rubber sheet was inserted under the scroll pump.
The 50 Hz vibration is improved.

Cavity field for constant input RF power.

RF Stabilities

	lnj1	Inj2 & Inj3	ML1	ML2
Amplitude	0.010% rms	0.007% rms	0.003% rms	0.003% rms
Phase	0.018° rms	0.025° rms	0.010° rms	0.009° rms

報告書にはINJ1の安定度を0.006%, 0.009° rmsとしたが、 20kHzの電源リップルに対し、Monitor用波形に5kHz LPFをかけてしまっていた。

入射器では若干改善が必要だが、主リニアックでは 3 GeVの目標値である0.01% rms, 0.01deg rmsを満たしている.

Measurement of Beam Momentum Jitter

RF安定度の妥当性を検証するため、ビームの運動量ジッター測定を行った。

Measurement of the jitter of peak point.

Momentum drift in the period of ~15 minutes was observed.

What causes Energy Drift?

Time interval of detuning is similar to the interval of energy drift.

Large ripple depends on valve control for liquid N₂.

Input-couplers of injector are cooled by liquid N_2 .

<RF source : cavity =1:1 >

Cavity phase is stabilized by RF FB.

<Vector-sum operation>

Vector-sum is constant, but each cavity phase fluctuates.

Vector-sum error may cause energy drift.

2017/10/27 cERL評価専門委員会 三浦

Vector-sum Error

Possibility of momentum drift caused by vector-sum error

- (1) Vector-sum calibration errorAmplitude & Phase calibration error
- (2) For low beam energy (β < 1), transit time is affected by cavity field.

Injection energy: 1.63MeV@Inj2, 2.36 MeV@Inj3

Cavity fields changes => Beam phase changes.

In order to minimize the momentum fluctuation due to the vector-sum error, "detuning" should be stabilized.

Result of Resonance FB Control Improvement

Higher FB gain in resonance control is adopted for small detuning.

Cav	$\Delta \theta$ deg (rms)	Δf Hz (rms)
INJ1	0.23	2.2
INJ2	0.10	2.0
INJ3	0.09	2.1
ML1	0.09	0.08
ML2	0.16	0.18

Detuning due to liquid N₂ flow has been compensated.

Inj2&Inj3 cavity phase become stable.

Result of Resonance FB Control Improvement

Measurement after modification of tuner feedback gain

Large momentum drift disappeared.

=> Beam momentum jitter $\Delta P/P = 0.003\%$ is achieved.

Disturbance Observer (DOB) + PI Control

Application of DOB for Ripples of 300kW Kly PS

チュウ氏資料

2017/10/27 cERL評価専門委員会 三浦

まとめ+知見

300kWクライストロンなど大電力の機器も含め、RFシステムを構築した。

Klystron電源は、小型化を図りつつも、メンテナンスのしやすい構造とすべき。

IOTは、空冷であるため、空調の無い場所での取り扱いが難しい印象がある. エージング時、低いパワーからゆっくりとパワーを上げる必要があるため、不向き(?)

半導体アンプは、安定で非常に使いやすい。漏洩電流には気をつける必要がある。また高効率化への努力もなされるべき。

LLRFでは、デジタルフィードバックシステムを構築した。 3 GeV ERLへの目標値 0.01% rms, 0.01 deg rmsに迫る性能を達成できている。 フィードバックパラメータの値の最適化を図りたい。

β<1のビーム速度に対し、ベクターサムを導入すると、ビームのエネルギー安定化が難しくなる。できれば、空洞毎に制御できた方が安定である。

DOBコントロールなど新たな制御手法も試験され、良好な結果を得ている。

温度に対する対策はとっているが、湿度によるドリフトの影響が現在観測されている。ドリフトを防ぐ対策の他、ドリフトをキャンセルする制御を導入したい.