
cERL用高周波源

道園真一郎

- 構成メンバー
- cERLの高周波仕様
- cERLの高周波システム
- HLRF/電源
- HLRF/高周波源(クライストロン, IOT)
- HLRF/導波管系
- LLRFシステム
- LLRF/アナログ系・安全インターロック系
- LLRF/モニター系
- LLRF/デジタルフィードバック系
- ■マンパワー

メンバーリスト

HLRF: 福田茂樹, 明本光生, 設楽 哲夫, 竹中 たてる, 中尾克已, 中島啓光, 本間博幸, 松下英樹, 松本修二, 吉田 光宏 LLRF: 道園真一郎, 荒川大, 片桐広明, 松本利広, 三浦孝子, 矢野 喜治

cERLの高周波仕様

- 外乱はフィードバックのゲイン分だけ抑えられる。
- フィードバックゲイン100,目標仕様が0.1%,0.1度の場合,各外乱はその1/3程度となることが望ましい.(→ 0.03%xゲイン100 = 3%,3度)
- ビーム電流も3%程度の安定度が必要.

	Buncher	Injector	ML	
Amplitude stability		0.1%		
Phase stability		0.1 °		
LLRF error (LO, IQ, ADC, except cable drift)	0.03% 0.03 °			
Beam-loading	0mA	10mA	0mA	
RF-High Voltage	<0.5% (~0.5% in amplitude, 5° in phase)			
f1/2 [Hz]		~650	32.5	
Microphinics (~3deg.) [Hz]		40	2	
feedback	PI control	P control	P control	
Proportional gain	10	100	100	

cERLの高周波システム

TOT 20kW P	KLY 30kV		2	Tnj=3	**************************************	MI-2
	Buncher	lnj-1	lnj-2	Inj-3	ML-1	ML-2
structure	NC	SC	SC	SC	SC	SC
Gradient	140 kV	1.5 MV	3.5 MV		15 MV	15 MV
QI		7.7e5	1.8e6	detuned	2e7	2e7
beam phase	-90deg.	-15 -30deg.	-10 0deg.		0deg.	0deg.
required rf*	4.5 kW	20 kW	55 kW		11 kW	11 kW
rf output**	6.2 kW	27 kW	76 kW		30 k	W
rf source	IOT	klystron	klystron		IOI	Γ

available power

power supply

20 kW

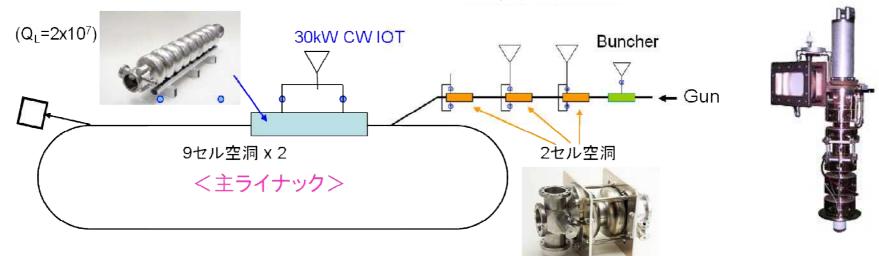
JAEA

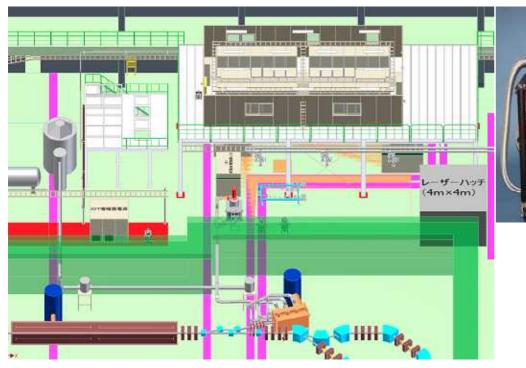
30 kW

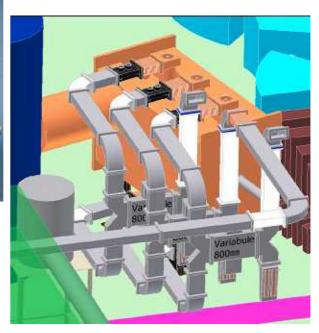
KEK

300 kW

KEK

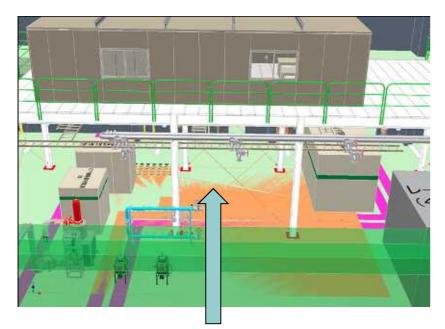

35 kW


JAEA

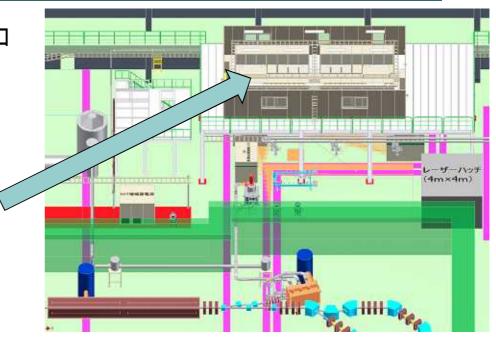

^{*50}Hzマイクロフォニックスが含まれる場合 **'7%RFロス + 20%フィードバックマージンを含む _評価専門委員会(2010/04/22)

CERLの高周波配置

<入射ライナック>



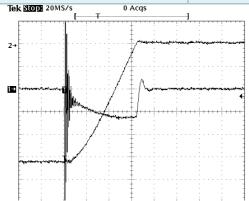
ERL評価専門委員会(2010/04/22)


CERLの高周波配置

■ 4台の電源, 高周波源(IOT,クライストロン)は中二階下,もしくは隣接した場所に設置(空調なし)

中二階のパネルハウス(空調あり) 全LLRFを設置

カプラーテストスタンド (IOTおよびクライストロン)


ERL評価専門委員会(2010/04/22)

ERL用300kWクライストロン電源の主な仕様

- •確立した電源技術による低価格化 サイリスタ位相制御による出力電圧制御と安定化
- ●IGBTスイッチを使用した高速遮断 ガン放電時クライストロンへの注入エネルギーを10J以下

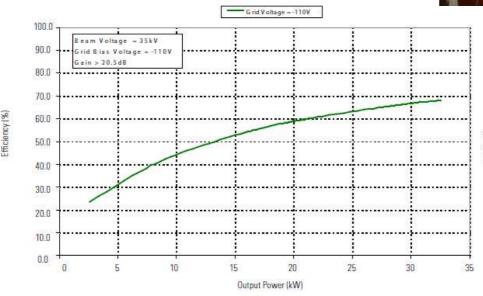
最大出力電圧	- 52 kV
最大出力電流	11 A
出力電圧リップル	0.5 %(P-P)以下
出力電圧安定度	0.5 %(P-P)以下
入力電源	AC 6.6 kV, 3ф, 50 Hz
冷却方式	水冷
筐体寸法	4.6mW x 2.5mD x 2.6mH

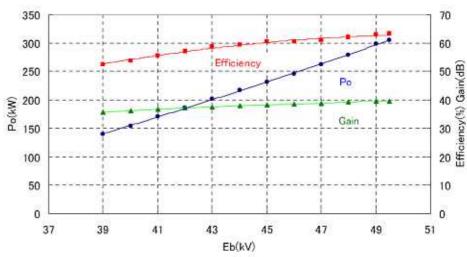
CH1:出力電流(10A/div) CT 110A使用 CH2:出力電圧(10kV/div) 5000:1

> 負荷注入エネルギー10J以下を 確認

ERL評価専門委員会(2010/04/22)

cERLの高周波源

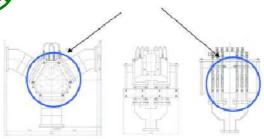

CPI社 VKL-9130 IOT



Frequency	1300 MHz
Output Power	30 kWatts
Beam Voltage	35 kV
Beam Current	1.4 A
Drive Power	< 500 Watts
-1dB Bandwidth	> 2 MHz
Gain	> 20 dB
Efficiency	> 60

Frequency	1300 MHz
Heater voltage	10.5 V
Heater current	14.5 A
Beam voltage	49.5 kV
Beam current	9.75 A
Output power	305 kW
Input power (at sat.)	34 W
Beam perveance	0.89 μΡ
Efficiency	63.2%
Gain	39.5 dB

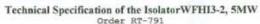
導波管系


導波管系では、特に大電力のサーキュレーターの開発が必要であった、その他の高周波導波管系についてもCW試験を実施している。

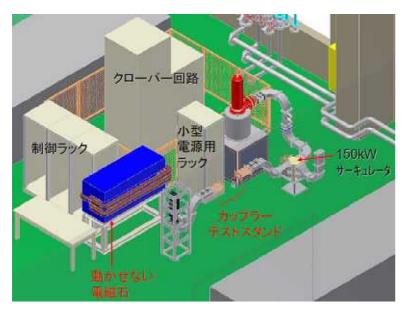
150kWサーキュレータ

■仕様

- 周波数範囲 1300±5MHz
- ■許容電力 150kW CW
- 導波管 WR-650
- フランジ CPR650相当
- VSWR 1.2以下
- ■挿入損失 0.3dB以下
- アイソレーション 20dB以上
- ■冷却 水冷
- ■負荷条件 全反射
- ■外部磁界 永久磁石
- ■構成 Y型


この部分4段構造

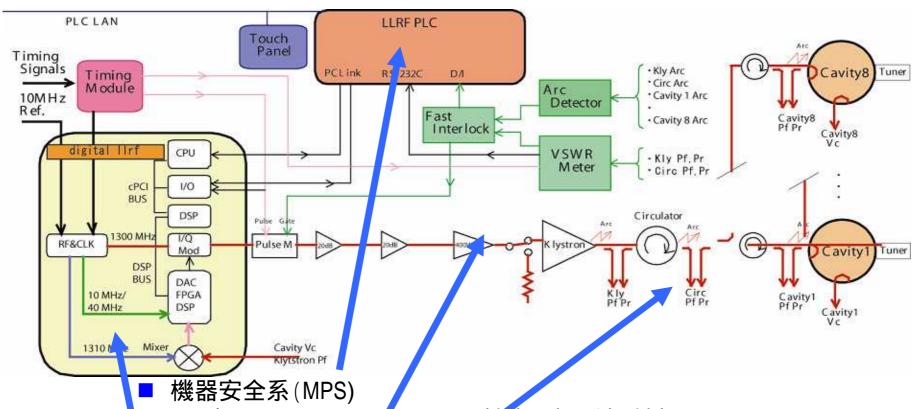
提案されている外形寸法



p. S. C.	Order RT-791
Frequency	1.8GHz+5MHz
Max. Pulse Power (forward)	5MW:
Max. Pulse Power (reflected	5MW any phase: $20LMH = \pm 1$
Max. Average Power	5MW any phase: 30kWサーキュレータ
Pulse duration ·	<1,7ms;
Repetition Rate	<10Hz
Insertion Loss	<0,15dB at 1,3GHz; <0,2dB at bandwidth;
Isolation *	>30dB;
VSWR -	<1,10 with full reflection at any phase;
Case -	gas tight up to 3 bar, leakage <5ml/hour
Gas ·	SF6 up to 1,5 bar:
Cooling -	deminiralized water,
	pressure <6 bar,
	test pressure 12 bar,
	flow rate <10 l/min for the circulator
	flow rate <60 l/min for the load
Magnet system -	permanent magnets:

クライストロンおよび空洞カプラーテストスタンド

クライストロン試験及び導波管系の試験をPF電源棟で行った. 超伝導空洞カプラーの試験用スタンドともなっている.


カプラーの評価後にクライストロン,冷却水,導波管系は東カウンターホールに移動予定.

評価専門委員会(2010/04/22)

LLRF系

- ■速いインターロック: アーク検出、高周波反射
- ■通常のインターロック: 上位の安全系,水,HV,クライオ
- ▮ 高周波モニター系
 - ■クライストロン出力、空洞入力、空洞反射、空洞電界
- 高周波増幅系 🗸
- デジタルフィードバック系

機器安全系・アナログ高周波系

- ファーストインターロックモジュール
 - →J-PARC MR用に開発されたのものを転用
- アーク検出器: J-PARC linac, STFのものを転用
 - → フォトセンサーを使った高感度なもの.カプラー等の放電の際にRFを遮断
- RFインターロック: J-PARC linac, STFのものをCW用に改造
 - → RF出力・反射・VSWRが設定を超えた場合にRFを遮断

ERL評価専門委員会(2010/04/22)

モニター系

■ ピックアップ信号用位相安定化ケーブル

	空洞-ラック	ラック内
ケーブル長	30m	2m
ケーブル材料	超高発泡ポリエチレン	ポリエチレン
温度係数	1ppm	20ppm
振幅変化	3e-5 / /m	?
温度変化	10度(空調なし)	3 (空調あり)
位相変化	0.52度	0.2度
振幅変化	0.89%	?

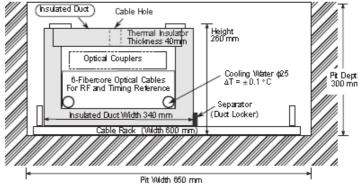


Figure 2: Cross section of the insulated duct set in t under-floor cable trench.

J-PARC linacでの光ケーブル温度安定化 0.1度の冷却水でケーブルを0.5度程度の安 定化を図っている(From 2003~)

0.5 なら,30mの位相安定化ケーブルで, 0.04%,0.026度程度の安定度が期待できる.

ケーブルの部分で仕様の0.1%, 0.1度を超えている. 本来は,ケーブル部分は0.03%,0.03度程度に抑えるべき. (そのためには,空洞ーラック間のケーブルを温度安定化し, ラック内のケーブルも慎重に選択する必要がある.) → 特にラック内ケーブルについて早急に検討が必要.

- リモートアッテネータ →STF用に開発済
- パワーメータなど

ERL評価専門委員会(2010/04/22)

<u>Digital IIrf system at KEK</u>

	beam	amplitude	phase
J-PARC,SNS	proton	+/-1%	+/-1deg.
ILC	electron	0.1%	0.1deg. 🔪
ERL/Euro-XFEL	electron	0.01%	0.01deg.

Quadrature Phase In-phase 3,600,000points 16QAM

デジタル通信よりはるかに高精度のシステムが必要

アナログFB(~100ns)

DSP(~数u秒)

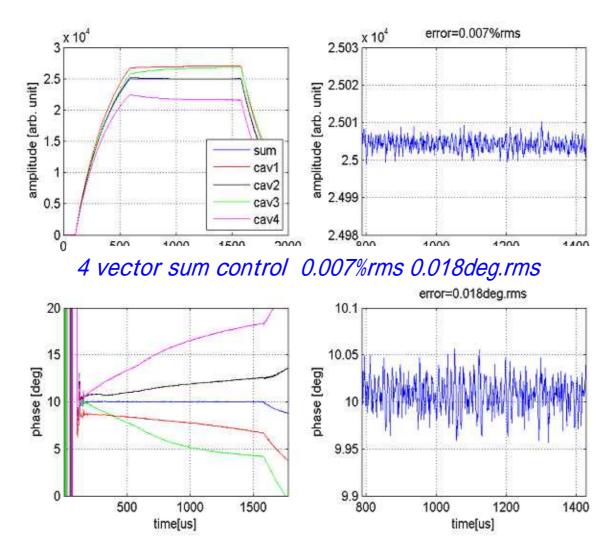
FPGA(Field Programmable Gate Array、~数100ns) (ロジック回路複雑処理は向かないが

単純なFB演算は可能)

デジタル通信等の発展の恩恵を受け、安価で高性能 の高周波素子、ADC等が提供されている.

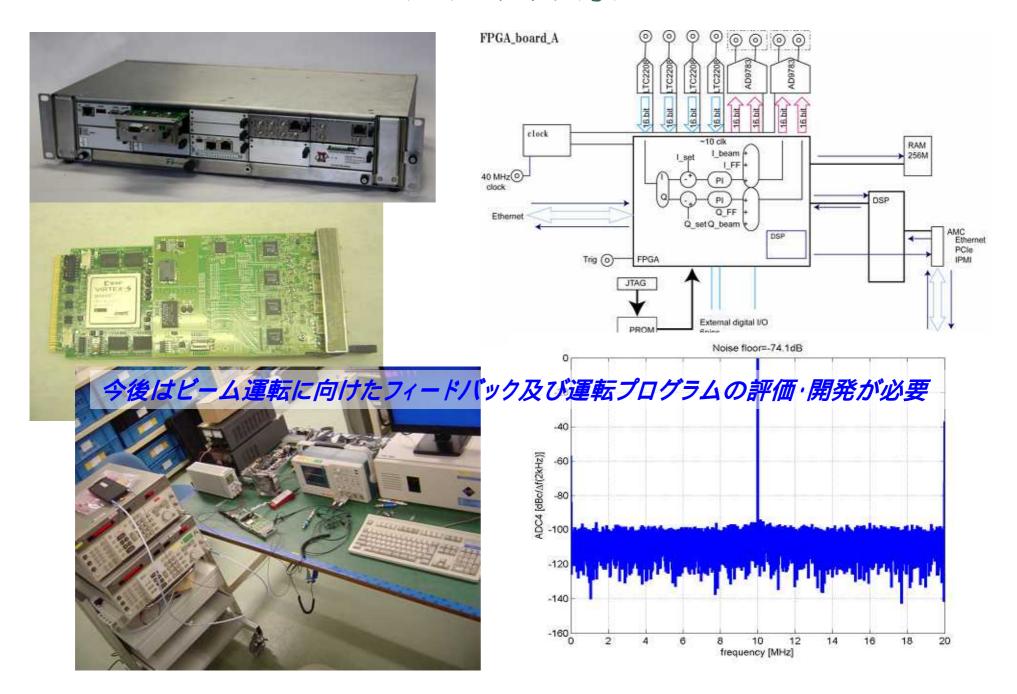
 $(1999 \sim)$ J-PARC Linac 324MHz normal conducting 650µs 50Hz 2 cav. vector sum

(2005~)STF 1.3GHz Superconducting 1500µs 5Hz 4 cav. Vector sum



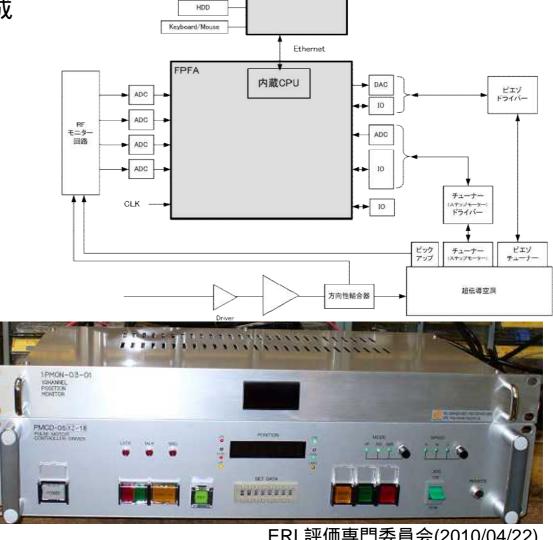
(2009~)J-PARC400MeV upgrade 972MHz normal conducting

(2009~)cERL 1.3GHz superconducting


CW

RF Stability @KEK-STF

短時間の安定度は仕様を満たせると思うが,ビームの安定度,ケーブルの振幅・位相のドリフト等の影響も考慮が必要.


デジタル系

チューナー制御など

- 実績のあるKEKBのチューナー制御のアルゴリズムを利用
- デジタルフィードバック用に開発したFPGAボードを使用
- チューナー用のモータードライバー·ポテンシオ試作
- 模擬的なモーターコントローラを作成
- → 動作検証を2010年度に行う

外部CPU

今後のスケジュール(HLRF)

- 2010年度:
 - クライストロン, IOT, 電源の運転評価
 - 導波管系機器の評価
 - カプラテストスタンド立ち上げ
- 2011年度:
 - 入射部空洞への導波管系設置
 - 入射部空洞テスト用RFシステム運転
 - 全高周波源(電源, IOT, クライストロン)の設置, 運転評価
 - 全導波管コンポーネント発注
- 2012年度:
 - 全導波管系組み立て

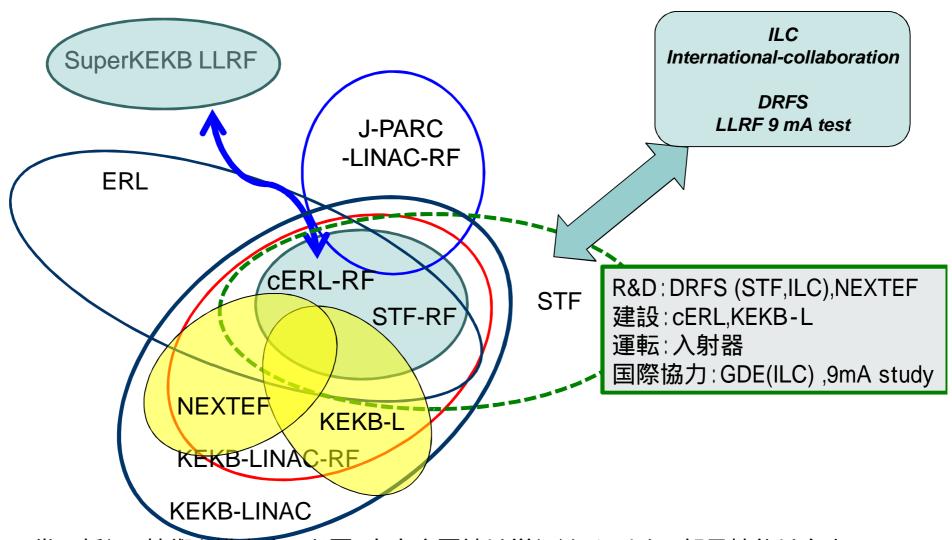
今後のスケジュール(LLRF)

- 2010年度
 - 東カウンターホールの中二階整備
 - ケーブルの温度特性評価
 - チューナー制御系,デジタルフィードバック系の評価
 - バーストモード用ソフトウエア開発
 - 上位ソフトウエア開発
- 2011年度
 - ケーブルラックの設置
 - 入射部空洞からのモニターケーブル配線
 - 入射部空洞試験設備立ち上げ
 - LLRF系の全発注
- 2012年度
 - モニターケーブル配線

fnj=1-Īnj=3 TML=1-MI=2 Buncher Īnj=2-IOT KLY 20kW 35kW 30kW300kW PS PS PS Inj-2 Inj-3 ML-1 ML-2 Inj-1 Buncher **JAEA KEK** KEK 電源 JAEA 無 klystron klystron 高周波源 IOT 無 無 無 無 導波管系 有 無 無 無 機器安全系 無 無 有 無 アナログ高周波 有 無 無 モニター系 有 無 無 無 デジタル系

無

無


無

チューナー制御系

無

無

施設とのかかわり

- 常に新しい技術を模索する必要:安定度要請は厳しくなり、また、部品性能は向上。
- 複数のプロジェクトにかかわる際に、その個々の施設における期待は高くなりがち。->各プロジェクトで各人が100%働いていないため。ERL評価専門委員会(2010/04/22)

まとめ

- HLRFの現状:
 - 電源はJAEAからの移管品を有効活用することで全数終了
 - 主要なハードウエアのR&Dは終了
- LLRFの現状:
 - J-PARCリニアックやSTFにおける実績を生かし、SuperKEKBとも連携し開発を進める。
 - 主要なハードウェアのR&Dは終了
 - ソフトウエアの評価が必要
 - ケーブルの選定が必要
 - バーストモード,チューナー制御についても要対応
- スケジュール
 - 2011年度にHLRF/LLRF1式を完成させ入射部空洞に対応
 - **2011年度に全数を購入する**
 - 2012年度に全数設置
- マンパワー
 - RFグループではほとんどすべてのプロジェクトにかかわっている