ERL評価専門委員会, 4月22日, 2010年

何故ERLなのか?

#) Linac based light source:
1) Emittance ∝ 1/γ ~10pmrad ~λ/4π
2) Short purse of photon pulses~ 0.1~1 pico-second
#) A great numbers of ID-beamlines

Comparison of ERL, SASE-FEL and XFEL-O

(brilliance : photons/mm²/mrad²/0.1%/s @ 10 keV)

rand challenges for basic sciences

 \sim on-crystalline materials and nano-science \sim

rand challenges for basic sciences

on-equilibrium states generated by photons

協力関係

Development of ERL until 2008

CDR of Compact ERL has been published

Super conducting cavity for main accelerator

Single cell model \Rightarrow 9 cell model \Rightarrow Ready for the fabrication of the cavity for Compact ERL

super conducting cavity of pre-accelerator

2 cell model \Rightarrow Ready for the fabrication of the cavity for Compact ERL

high power RF source 300 kW Klystron will be ready by October 2009

Injector Started the designing.

500kV · DC electron gun

The fabrication has started under the collaboration with JAEA, ISSP, Hiroshima Univ., Nagoya Univ. and KEK.

Laser system for electron gun

Development of Yb fiber-laser system in collaboration with AIST, ISSP and KEK. \Rightarrow Ready for the system of 10 mA electron beam current. Lattice, Magnet, Vacuum Designing stage

Clearing Old Proton Beamlines

By S. Sakanaka, ISAC 25/Feb./2010

Recent View in the East Counter Hall

C-ERL建語	没 年	次計	-画	設計	試作	製作	調整運転
年度	2007	2008	2009	2010	2011	2012	
建物・インフラ整備				建物・冷却水・電	源設備		
放射線シールド・安全系				■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	製作、インターロ	ック	
電子銃・励起レーザー・入射部	レーサ 電子針	「一開発 た開発	500kV電子鎖 真空システム	先 真空テスト 高	圧テスト 電子ビー テスト@,	ム 電子ビーム AR テスト@c-EF(
超伝導空洞(前段加速部)	空洞設計	•試作 ^褚	夏数年度契約で 入力力	加速空洞モジュー プラーテスト	ル製作 設置・	運転調整開始	
超伝導空洞(主加速部)	空洞設計	•試作 ^补 入;	复数年度契約で カカプラー・HO	加速空洞モジュー M吸収体テスト	ル製作	設置·運転調整	開始
RF電源系 RF源	システム クラ	は オストロン	IOT試作 式作・テストベン	チ ^{C-ERL用RF源}	整備・設置・個別運	転 総合運転	総合運転
RF制御系		RF制御	設計·試作	RF制御	「系製作	総合運転	
ヘリウム冷凍設備	<mark>しい</mark> 設備シス	テム設計	製作	調整運	云	総合運	4
周回部(電磁石系、真空 系)	ラティス	<mark>●</mark> ● ● 設計	テストマグ: 真空システ	ネット、 ム試作	作·磁場測定·設置	L 総合	車云
ビームモニター・制御		<mark>·</mark> 設計	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	技術試作	全体製作·設置	総合	単 転

詳細は添付ファイル参照

予算削減努力

- JAEA・NIMSからの譲渡物品の有効利用
 IOTの電源2台+ヘリウム冷凍器+マグネット等
- 素核研からのシールドブロックの有効利用 約30個以上のシールドブロックを譲渡
- 動燃からの譲渡物品の有効利用
 200kWビームダンプの有効利用
- 他機関の加速器の譲渡の実現
 マグネット等の利用を念頭において交渉中
- ・ビームライン予算の獲得
- 大学間の協力のよる要素開発(R&D)
 電子銃高耐圧セラミック管、極高真空技術、フォトカソー
 ド、大出カドライブレーザー、超伝導空洞入カカプラー等

Human Resources

Working Group	主要メンバー (KEKのみ; 原則として2009年11月時点)	FTE (Nov. 2009)	FTE増 努力必要
電子銃·入射部	宮島、本田(洋)、山本(将)、佐藤(康)、内山、中村 (英)、高橋、松葉 羽島、西森、永井、鳥塚、吉富、 伊藤、中村(典)+etc.	3.7	+0.5
超伝導空洞(前段加速部)	加古、渡辺、山本(康)、宍戸、佐藤(昌)、野口	0.2	+2
超伝導空洞(主加速部)	古屋、梅森、阪井 沢村、篠江、中村(典)	1.65	+2
RF源	福田、道園、三浦、荒川、明本、中尾、中島、本間 (博)、吉田(光)、片桐、松下、竹中、設楽、矢野	3.94	+0.5
ヘリウム冷凍設備	細山、仲井、小島、原、中西(功)、可部、本間(輝)	1.62	+0.5
軌道·電磁石·電源·挿入 光源	原田、島田、尾崎、上田、土屋、青戸中村(典)	1.6	+0.5
真空	本田(融)、谷本、野上、佐々木	0.38	+1.5
ビーム診断・制御	带名、高井、飛山、三橋、古川	0.4	+1.6
建物・インフラ・安全	芳賀、浅岡、多田野、長橋	0.75	+0.4
マネージメント・全体設計	河田、小林(幸)、坂中	1.5	+0.5
合計		15.74	+10

*加速器研究施設・人的資源調査に基づく(2009年11月、自己申告) 複数所属の人は一つのWGに記入

コンパクトERLを用いたサイエンス (その後のアップグレードの原動力)

- cERL高輝度光源による高精細X線イメージング
- ・レーザーコンプトン散乱X線による

フェムト秒分子動画測定技術の確立

cERLのテラヘルツCSR利用研究

レーザーコンプトン散乱X線によるフェムト秒 分子動画測定技術の確立

まとめ

- 2009年度からコンパクトERLの建設は開始。
- ・現時点で15人以上のFTEでプロジェクトを進めている体制が構築されている。
- 2012年度末に35MeV,10mAでビーム運転開 始を目標に建設。
- ・種々の予算削減の努力。
- ERLのサイエンスワークショップ、XFELOの セミナーを順次進めている。