cERLの現時点での達成性能の概要

第10回ERL計画推進委員 2017年7月7日 13時30分~15時30分 KEKつくばキャンパス 3号館1階会議室

> 高エネルギー加速器研究機構 加速器研究施設 宮島 司

目次

- cERLで検証すべき課題
- 鍵となる要素の性能
- ・加速器としての総合性能
- まとめ

ERL加速器の特徴

- Energy Recovery Linac (ERL、エネルギー回収 型線形加速器)の名の通り、線形加速器
- 線形加速器:電子源から電子を生成し加速、 電子ビームを利用したのちに、ダンプに捨て る

- 線形加速器の特徴:
 - ビームは一度きりの使い捨て(ビーム品 質は電子源によって決まる)

$$\mathcal{E} = \frac{\mathcal{E}_n}{\gamma \beta} \quad \overleftrightarrow \quad \frac{1}{\rho} \frac{1}{\rho$$

でも、出力は「電流×加速エネルギー」
 なので、大電流化するとどんどん必要な
 電力が増加(ついでに捨てる時の放射
 線も増大)

電流増強・加速すればするほ ど必要な電力も増える Energy Recovery Linac (ERL、エネルギー回収型 線形加速器):加速した電子ビームをもう一度 加速空洞に通して減速。そのエネルギーを次の ビームに与える。

- ERLを利用した光源の目指すところ
 - 先端性(高輝度、高繰り返し、短パルス長、小さい エネルギー拡がり)と汎用性(同時利用)の両立
 高輝度・大電流ビームの生成・加速が鍵

ERL光源利用時に必要となる加速器性能

3 GeV ERL光源で想定される運転モード

Beam energy	3 GeV			
Average beam current	10 mA	100 mA		
Bunch charge	7.7 pC	77 pC		
Repetition rate of bunch	1.3	GHz		
Normalized emittance	0.1 mm mrad	1 mm mrad		
Emittance at full beam energy	17 pm rad	170 pm rad		
Energy spread	2 × 10 ⁻⁴	2 × 10 ⁻⁴		
Bunch length	2 ps	2 ps		

High-coherence mode High-flux mode

- 挑戦的な値はどれか?
 - 平均ビーム電流 100 mA
 - 規格化エミッタンス 0.1 mm mrad
 - <u>平均ビーム電流 100 mA</u>
 - これだけの電流を生成し続ける
 電子源開発が必要
 - さらにこれを加速し続ける加速空 洞開発が必要
 - <u>0.1 mm mradのエミッタンス</u>
 - この小さい初期エミッタンスを実 現するカソード材質
 - これを悪化させない
 輸送法(空間 電荷効果:クーロン斥力の
 が鍵)

• 100 mAに必要な電力とビームを捨てる時の出力

- <u>エネルギー回収をする場合</u> - 電力:数+MWクラス(100 mA × 10 MeV = 1 MW
 - + 冷凍機の運転等)
- 捨てる出力:1 MW

•

線形加速器の大電流化に向けてはエネルギー回収が一つの解になる

それでは、他の加速器性能はどうなのか?

ERL光源実現に向けての課題

- 光源加速器に必要な性能:安定な光(変動しない、中断しない)、低いコスト(建設・運転)
- 光源利用に向けたERL加速器実現の課題(未知数は何か?)
 - 高輝度・大電流電子ビームの生成:
 - 100 mAを供給し続ける電子源はこれまでにない
 - 大電流電子ビームの加速:
 - 100 mAを加速し続ける超伝導加速空洞はこれまでにない
 - ビーム性能:
 - 大電流・低エミッタンス・短バンチの両立を実証することが必要
 - 安定性(長時間・安定に、一様に):
 - ・ 貯蔵リングのような安定化機構がないので、変動源を断つことが必要
 - ユーザー利用を中断する原因: カソード交換頻度(カソード寿命が重要)、超伝導空洞の停止頻度
 - 運転コスト:
 - エネルギー回収は一見エコっぽく見えるが、ビーム出力とは別に、超伝導空洞を2~4 Kに冷却するための冷凍機の運転にコストが掛かる。
 - 放射線遮蔽:
 - エネルギー回収によってダンプに捨てる出力はかなり下がる。が、輸送中にどこで、どれくらいビーム 損失が起きるのかは、試験機で検証する必要がある。

要素技術開発とともに、光源加速器としての総合性能を検証する必要がある

実証機としての compact ERL (cERL)

compact ERLの目的

- ・鍵となる装置のR&Dと安定な運転の実証
- ・ 超低エミッタンスビームの生成・加速
- ・エネルギー回収の実証
- 加速器総合性能の確認

設計段階のパラメタ (「コンパクトERLの設計研究」より)

Parameters of the Compact ERL

	Parameters
Beam energy (upgradability)	35 MeV 125 MeV (single loop) 245 MeV (double loops)
Injection energy	5 MeV
Average current	10 mA (100 mA in future)
Acc. gradient (main linac)	15 MV/m
Normalized emittance	0.1 mm mrad (7.7 pC) 1 mm mrad (77 pC)
Bunch length (rms)	1 - 3 ps (usual) ~ 100 fs (with B.C.)
RF frequency	1.3 GHz

ERLを構成する基本要素をすべて含む

目次

- cERLで検証すべき課題
- ・鍵となる要素の性能
- ・加速器としての総合性能
- まとめ

鍵となる開発要素

• <u>電子銃</u>

- 高品質・大電流・長時間運転の3つを同時に満たすことが必須

⇒「光陰極を用いたDC電子銃」を選択

「高品質のため:空間電荷効果を弱める⇒高い電圧が必要 ⇒ 500 kV 高品質+大電流のため: GaAsカソードの採用(NEA表面が長寿命化のカギ) 長寿命化するため: カソード周りの真空条件を良くする(極高真空開発)

- 目標設定: 100 mA (77pC/bunch)で1 mm mradを切る電子ビームを,500 kVで加速
- 加速空洞
 - 大電流を高い加速勾配でCW運転で加速することが必須
 - ⇒「超伝導加速空洞」を選択

入射器超伝導空洞: 2-cell 空洞(compact ERLでは3台、3 GeV光源では6台) 主加速超伝導空洞: 9-cell空洞(compact ERLでは2台、3 GeV光源では224台)

– 目標設定:15 MV/m で100 mAを加速

課題を解決できるのか実証(段階的な 開発を継続すること)が欠かせない

実証機として、compact ERL (cERL)を建設

2017年7月7日、第10回ERL計画推進委員

gmented

electron bunch

laser

cathode

1 | | |

anode

HV terminal

Support rod

電子銃の性能

電子銃の現状

•高品質: 低電流で達成 (0.07 mm·mrad @10fC, 390 kV)

•大電流:

- •500 kV で 1.8 mA、低電圧で10mAを達成(100 mAには新たな電源が必要)
- •cERL全体としては、390 kV, 0.9 mAを達成
- •2017年6/29, cERLで 500 kVビーム生成に成功
- •長時間: 450 kV 低平均電流で達成(~17日間)
 - •高電圧に起因する停止はなし(下流の真空悪化 による停止は1回あり)
 - •0.9 mA 運転では、GaAsで量子効率の顕著な劣 化はなし

現状の性能から次の段階に向けて

- •大品質化: 500 kV 印加達成で、目標性能に到達
- •大電流化: 500 kV 10 mA試験の準備を進めている
- •長寿命化:「GaAs+極高真空での性能検証」+「GaAsカソードに代わる材質の開発」
- ・マルチアルカリカソード開発: 広島大学、QST(旧JAEA)を中心として、開発を進めている
 - ⇒ 現状でも電荷寿命で一桁以上改善できる見込み 2017年に広島からKEKまで輸送試験を実施したが、量子効率はゼロだったので

N. Nishimori, ERL17 workshop

GaAs QE derived from beam dump current and monitor laser power for Mar. 24 to 30 operation in 2016

QE looks unchanged during 1mA operation

入射器超伝導空洞の性能

設計段階のパラメタ(「コンパクトERLの設計研究」より)

入射用超伝導加速器

セル数・空洞数 加速勾配 加速電圧 2 セル・3 空洞 7.4 (14.7 *) MV/m 5 (10 *) MV

* 50 mA 以下の低電流の運転モード。

主空洞の性能

設計段階のパラメタ(「コンパクトERLの設計研究」より)

主超伝導加速器

セル数・空洞数 加速勾配 加速電圧 9 セル・4 空洞 15-20 MV/m 55-80 MV

主空洞の現状

- •高い加速電圧: 8.57 MV/m を達成(2空洞同時)
- 2015年5月~6月 : <mark>10 MV/m</mark> + 7 MV/mで運転
- •大電流の加速: 0.9 mAの加速を達成
- ●長時間: 8.57 MV/m 運転ではかなり安定
 (2014年5/20~6/20の停止回数:20回、全て対処可能なものである)
- •2014年6月~5月:運転開始3週間後に、空洞の「 field emissionの増大が見られたが、pulse aging」 によって回復できることがわかった。
- 高い加速電圧かつ大電流:次は10 mA

目次

- cERLで検証すべき課題
- ・鍵となる要素の性能
- 加速器としての総合性能
- まとめ

平均電流 0.9 mA CW運転の達成

- 2015年5月のCW運転では、徐々に軌道 が変化し、放射線損失が増加する現象 が見られた
- ⇒ レーザーミラーの帯電の可能性が高く、 ガラス製から金属製ミラーに交換

Mar. 25, 2016

2016年3月のCW運転

1000

800

600

400

200

Beam Current (µA)

Orbit fluctuation in CW operation (1 hour).

Metal Mirror

Radiation level (17:44-17:49), in Mar. 2016

ミラー交換の結果 ⇒ CW運転が極めて安定になった。軌道変動、放射線増 加もみられなかった。

宮島 司(KEK)

平均電流 10 mAに向けた見通し

- 2016年のCW運転: バンチ電荷 5.5 pC, ビーム繰り返し162.5 MHz
 ニのバンチ電荷は、繰り返しを1.3 GHzにしたときの 7 mA に相当
- 一部遮蔽の増強は必要だが、この測定結果から外挿しても1.3 GHz, 10 mAを十分許容できるビームロス量に抑え込めることが実証できた

ビーム性能

- ERLで重要なこと
 - 低エミッタンス・短バンチ長・大平均電流を両立すること
 - 空間電荷効果によって、低エミッタンスと短バンチ長が相反する関係になる
 - ERLではエネルギー回収する(周回ビームが戻る)ため、多段バンチ圧縮 が難しく、入射器で1~3 psまで最初から圧縮する必要がある ⇒ 低エネ ルギー領域での精密なビーム制御が要求される
 - エミッタンスの評価: かならずバンチ長とセットで考える必要がある

2017年7月7日、第10回ERL計画推進委員

達成した規格化エミッタンス

- 極低バンチ電荷(< 50 fC/bunch)
 - ほぼカソードで生成されるエミッタンスを保持して周回を達成(0.13 ~ 0.19 mm mrad)
 - ほぼ設計通り
- 低バンチ電荷(0.5 pC/bunch)
 - バンチ長:3 ps
 - 0.3 ~ 0.41 mm mrad(周回部)
 - 設計から2倍弱
- 中バンチ電荷(7.7 pC/bunch)
 - バンチ長:3ps
 - 0.8 mm mrad(入射器)、1.0 ~ 1.6 mm mrad(周回部)
 - 設計から2~3倍
- 高バンチ電荷(40 pC/bunch)
 - バンチ長: 3-4 ps
 - 0.9~2.4 mm mrad(入射器)、2.0~10 mm mrad(周回部)
 - 最大設計の10倍程度
- 低エミッタンス・短バンチ長・大バンチ電荷
 - 横方向、進行方向ビームダイナミクスを精密に制御する必要がある

ビームダイナミクスの理解

進行方向のダイナミクス(短バンチ化)
 2017年3月から、ほぼ設計通りに制御できるようになってきた

- 横方向のダイナミクス(低エミッタンス化)
 - 低エネルギー領域(500 keV)のビーム制御の精密化、入射器空洞の現実 とモデルのずれの修正、励起レーザーのモデル修正が必要
 - ビーム制御法確立のための調整時間が必要(特に40 pC)
 - エネルギーを上げられれば空間電荷効果を弱められる

目次

- cERLで検証すべき課題
- ・鍵となる要素の性能
- ・加速器としての総合性能
- まとめ

cERL性能まとめ(入射器)

2017年3月までの運転で達成した性能

Parameter	Achieved performance	Target values	Remark
Beam energy T	5.6 MeV (typ.), 5.9 MeV (max.)	5 MeV (typical)	OK
DC voltage for DC gun V _{gun}	450 kV in operation (500kV achieved)	500 kV	OK
Acceleration Energy $E_{\rm acc}$	7 MV/m (typ.)		ОК
Normalized Emittance (Very low bunch charge)	<mark>≈ 0.07 μm⋅rad</mark> (@~10 fC/bunch, T=390 keV)	0.1 μm⋅rad	OK
Normalized Emittance (Low bunch charge)	≈ <mark>0.17 μm·rad</mark> (@0.02 pC/bunch, T=5.6 MeV)	0.1 μm⋅rad	OK
Normalized Emittance (Medium bunch charge)	<mark>≈ 0.8 μm∙rad</mark> (@7.7 pC/bunch, T=5.6 MeV)	≤ 1 μm·rad (at the beginning) 0.1 μm·rad (aggressive)	<mark>OK</mark> Still
Normalized Emittance (High bunch charge)	1.5~3 (@40 pC/bunch)	1 μm⋅rad	still
Momentum spread $(\sigma_p/p)_{\rm rms}$	< 10 ⁻³ (< 1 pC/bunch) (1.5 - 2.5)×10 ⁻³ (@7.7 pC/bunch)	≤ 10 ⁻⁴ (3 GeV ERL)	Should be OK

H. Kawata, ERL17 workshop

cERL性能まとめ(周回部)

Parameter	Achieved performance	Target Value	Remark
Energy of the electron beam E	19.9 MeV	35 MeV	Still
Energy of Injector E _{inj}	2.9 MeV	5 MeV	Still
Average Current <i>I</i> ₀	6.5 μA(steady state)、 1mA (steady state)	10 μΑ 10 mA	OK Should be OK
Field gradient of main linac <i>E</i> _{acc}	8.2 MV/m	15 MV/m	Still
Normalized Emittance at RL (Very low bunch charge)	≈ <mark>0.13 μm₊rad</mark> (@~0.05pC/bunch)	0.1 μm⋅rad	ОК
Normalized Emittance at RL (Low bunch charge)	<mark>0.3 μm·rad</mark> (@0.5 pC/bunch)	0.1 μm⋅rad	Not bud
Normalized Emittance at RL (Medium bunch charge)	 ∼ 1.0-1.6µm·rad (@7.7 pC/bunch, E=19.9 MeV) 	≤ 1 μm⋅rad (Beginning) 0.1 μm⋅rad (aggressive)	Should be OK Still
Normalized Emittance at RL (High bunch charge)	2-10 μm·rad (preliminary) (@40 pC/bunch)	1 μm⋅rad (@77 pC/bunch)	Still we need an adjustment time
Momemtun Spread $(\sigma_p/p)_{rms}$	1.2 x 10 ⁻⁴	≤ 10 ⁻⁴ (3 GeV ERL)	OK
Jitter of Momemtum $(\Delta p/p)_{\rm rms}$	6 x 10 ⁻⁵	\leq 10 ⁻⁴ (3 GeV ERL)	OK
Bunch compression (σ_t)	0.25ps @ 2pC/bunch	0.1ps	Not bad

H. Kawata, ERL17 workshop

ERL光源の課題に対するcERLの検証経過

- 光源利用に向けたERL加速器実現の課題(未知数は何か?)
 - 高輝度・大電流電子ビームの生成:
 - 実証済み: 500 kV で 1.8 mA生成(電子銃単体)、390 kV で 0.9 mA生成(cERL周回運転)。カソード単体でのエミッタン スは0.07 mm·mrad @10fC, 390 kV、実用環境下での500 kV ビーム生成を達成。
 - 残りの課題: 10 mA(100 mA)生成試験
 - 大電流電子ビームの加速:
 - 実証済み: 8.5 MV/m で 0.9 mA のCW運転。実用環境下での性能回復法の確立。
 - 残りの課題: 大電流加速試験(10 mA, 100 mA)。加速勾配を上げること。
 - ビーム性能:
 - 実証済み: 40 pC/bunchまでの性能検証を実施。進行方向ダイナミクスの制御はほぼ確立。バンチ圧縮の実証。
 - 残りの課題: 大バンチ電荷(>40 pC)でのエミッタンス補償法の確立。
 - 安定性(長時間・安定に、一様に):
 - 実証済み: CW 0.9 mA での長いカソード寿命、電子銃・超伝導空洞(ただし、空洞台数はまだ少ない)の高い安定性
 - 残りの課題: > 10 mA でのカソード寿命試験(寿命はどれくらい? ビーム品質の劣化は?)
 - 運転コスト:
 - 超伝導空洞は一度冷やしたらずっと運転し続けないと効率が悪い。cERL運転の電力は1.1 MW(このうち、およそ半分が 冷凍機の電力)。注:3 GeV ERLでは冷凍機の構成が異なるので、これの外挿とはならない。
 - 放射線遮蔽:
 - 実証済み: 平均電流0.9 mAでの低損失を実証。CW 10 mA運転の目途も立った
 - 残りの課題: CW 10 mA運転の実証、ビームダンプ以外でのビーム損失箇所・量の評価を進めること
 - cERLの利用に向けた試験
 - レーザーコンプトン散乱によるX線発生試験、THz光生成試験