Future Light Source based on Energy Recovery Linac in Japan

<u>H. Kawata¹</u>, T. Kasuga¹, K. Satoh¹, R. Hajima², and N. Nakamura³

¹ERL Project Office, High Energy Accelerator Research Organization ²ERL Development Group, Japan Atomic Energy Agency ³The Institute for Solid State Physics, University of Tokyo

Outline

- 1) What is the requirement for the future light source?
- 2) Scientific cases at the ERL
- 3) ERL project team
- 4) Present status of the R&D for the ERL project (Poster: A9 R. Hajima et al.)

What is the requirement for the future light source?

1) Specimen becomes smaller and smaller (nano-structure)

Focused beam size: $\mu m \longrightarrow nm$

2)Detailed information about electronic states

Higher Energy resolution

3) Structural analysis of noncrystalline materials

Coherent X-ray is essential!

4) Studies for non-equilibrium states

Short pulse (sub-pico second) is essential!

High brilliant light source for general use

Coherence and short pulse for cutting-edge science

It is important to realize both of them!

ERL is one of the most promising candidates

#) Linac based light source:

1) Emittance can be improved by a factor of $1/\gamma$ from a natural emmitance .

2) Short purse of the order of 0.1~1 pico-second can be available.

#) A great numbers of ID-beamlines can be available.

#) ERL will not provide extremely high peak brilliance, but high averaged brilliance. This feature will be suitable to keep a character for the proving light source as an usual synchrotron radiation experiments.

		PF-ERL undulator @ 5 GeV		SPring-8 undulator @ 8 GeV	
Beam current		100 mA	100 mA	100 mA	100 mA
Undulator length		30 m	5 m	25 m	5 m
Source size	horizontal	37.8	18.2	892	892
(µm)	vertical	37.8	18.2	22.8	10.6
Source div.	horizontal	4.1	9.8	37.4	38.4
(μrad)	vertical	4.1	9.8	4.3	10
Beam size @ 50 m	horizontal	244	510	2761	2813
(µm)	vertical	244	510	236	509
Average brilliance(ph/s/0.1%/mm ² /mr ²)		6.0×10^{23}	7.6×10^{22}	2.2×10^{21}	5.0×10^{20}
% beam coherence		19	15	0.14	0.13

At the case of 8 keV photon energy

Size of 5-GeV class ERL

Brilliance and coherent fraction spectra from ERL(5GeV, 0.3GeV)

It is possible to cover the energy range from VUV to X-ray by using 5GeV ERL and 0.3GeV ERL. Coherent fraction expected from ERL. It is possible to achieve the values of 10-20% at the energy range of 10keV.

PF

Scientific cases at PF-ERL

- Scientific subject opened by coherent X-rays #Structural analysis of non-crystalline materials #Phase contrast imaging #Investigation at the fluctuation of several domains by means of X-ray photon correlation spectroscopy
- Scientific subjects opened by short pulses (sub-pico second) #Investigation of non-equilibrium dynamics.
 #Study of spin dynamics in material.
 #Chemical reaction.
 #Photo-induced phase transition and related materials
 #Reaction process at protein (life science)
- Scientific cases opened by nano beam

#Combination with the other general experimental method.

Local structural analysis, Local electronic state, Microscopic studies, Structural analysis of small crystals (~100 nm), etc.

Photo-induced phase transition (Strongly-Correlated Electron Systems)

Koshihara et.al. (Tokyo Institute of Tech.)

ERL Project Office

Collaboration between KEK, JAEA and ISSP

ERL project office has been organized officially in KEK from 1/April/2006.

Kick-off meeting (26/Oct./2005) for ERL project with directors of IMSS in KEK and KPSI in JAEA, and more than 50 scientists , who were interested in ERL project.

Structure of the ERL Project Office

R&D Plan towards the ERL Light Source

Development of key components

- DC photocathode gun (JAEA group)
 - Ultra-low emittance & high current
 - 500 kV, NEA GaAs (super lattice)
- Superconducting cavities and cryomodules (KEK group)
 - under basic design.
 - Close collaboration with ILC team for basic technologies

ERL test facility

- Testing critical components under beam operations
- Generation and acceleration of ultra-low emittance beams
- Investigation of accelerator physics issues (CSR, beam losses etc.)

R&D Status: Low-emittance gun (JAEA)

average current > 100mA

normalized emittance < 0.1mm-mard

DC gun with NEA-GaAs cathode (most promising)

<Strategy for gun development>

- Superlattice GaAs photocathode
 - quantum confinement effects
 - high-average current and small emittance
 - collaboration with Nagoya Univ.
- DC gun
 - 250-kV, 50mA gun (making full use of property of JAEA-FEL)
 - ultra-high vacuum for a long-life cathode
 - load-locked cathode preparation

Photocathode Test Bench (JAEA)

cathode holder

UHV chamber and laser

Development of a DC gun (JAEA)

Development of superconducting cavity for ERL

- Required performance for main linac
 - Eacc=10~20MV/m
 - → Heat load 10~40W/m(@2K)
 - 1.3GHz operation
 - Beam current 100mA
 - →Need strong HOM (Higher Order Mode) damping to suppress Beam-breakup instabilities and heat load
- Required performance for injector
 - − 5MV x 100mA = 500kW \rightarrow Need high power coupler
- Close collaboration with ILC cavity group to develop several components efficiently.

R&D Status: Superconducting Cavities (KEK)

- **R&D** team, leaded by T. Furuya, has organized.
- Close collaboration with Superconducting Test Facility (STF) team at KEK.

Developing SC-cavities for the STF (courtesy, S. Noguchi).

Site for the ERL Test Facility

Plan for ERL Test Facility

Maximum current: 100 mA Beam energy: 60 – (200) MeV Normalized emittance: 1 – 0.1 mmmrad Injection energy: 5 MeV (15 MeV)

Time schedule of ERL project

- Construction of a 60~200MeV class ERL (prototype) in an experimental hall which was used for cold neutron science.
- 2) Demonstration of the principle of the ERL until 2010.
- 3) We shall start construction of 5 GeV class ERL from ~2011.
- 4) We hope to start the user operation of ERL from ~2015.

Summary (1)

- ERL is on of the most promising candidate for future light source.
- ERL project has been progressed under the collaboration with KEK, JAEA, ISSP and other facilities.
- To resolve technical & physical challenges, an ERL test facility is under consideration at KEK.
 - To test critical components under beams
 - To generate and accelerate ultra-low emittance beams
 - To investigate accelerator physics issues
- The ERL test facility will consist of a 5-MeV injector, 1-2 cryomodules, a return loop and a beam dump. The energy will be 60 200 MeV.
- Design of the test ERL is underway.
- R&D for the DC photocathode gun (at JAEA) and for the SC cavities (at KEK) were started.

Summary (2)

- ERL Projects
 - US: Cornell University
 - UK: 4GLS Collaboration network between Asia/Oceania Synchrotron Radiation Facilities
 - Japan: Collaboration between KEK, JAEA, ISSP, and other facilities

Thank you for your attention!