Present status of ERL project at KEK

Mini-Workshop for ERL under the collaboration meeting between CLASSE and KEK 12/March/2007

<u>H. Kawata</u>

ERL Project Office, High Energy Accelerator Research Organization

Outline

- 1) What is the requirement for the future light source?
- 2) Scientific cases at the ERL
- 3) ERL project team
- 4) Present status of the R&D for the ERL project

What is the requirement for the future light source?

1) Specimen becomes smaller and smaller (nano-structure)

Focused beam size: $\mu m \longrightarrow nm$

2)Detailed information about electronic states

Higher Energy resolution

3) Structural analysis of noncrystalline materials

Coherent X-ray is essential!

4) Studies for non-equilibrium states

Short pulse (sub-pico second) is essential!

High brilliant light source for general use Coherence and short pulse for cutting-edge science

It is important to realize both of them!

ERL is one of the most promising candidates

#) Linac based light source:

1) Emittance can be improved by a factor of $1/\gamma$ from a natural emmitance.

2) Short purse of the order of 0.1~1 pico-second can be available.

#) A great numbers of ID-beamlines can be available.

#) ERL will not provide extremely high peak brilliance, but high averaged brilliance. This feature will be suitable to keep a character for the proving light source as an usual synchrotron radiation experiments.

		PF-ERL undu	lator @ 5 GeV	SPring-8 undulator @ 8 GeV	
Beam current		100 mA	100 mA	100 mA	100 mA
Undulator length		30 m	5 m	25 m	5 m
Source size	horizontal	37.8	18.2	892	892
(µm)	vertical	37.8	18.2	22.8	10.6
Source div.	horizontal	4.1	9.8	37.4	38.4
(μ rad)	vertical	4.1	9.8	4.3	10
Beam size @ 50 m	horizontal	244	510	2761	2813
(µm)	vertical	244	510	236	509
Average brilliance(ph/s/0.1%/mm ² /mr ²)		6.0×10^{23}	7.6×10^{22}	2.2×10^{21}	5.0×10^{20}
% beam coherence		19	15	0.14	0.13

At the case of 8 keV photon energy

Size of 5-GeV class ERL

Brilliance and coherent fraction spectra from ERL(5GeV, 0.3GeV)

It is possible to cover the energy range from VUV to X-ray by using 5GeV ERL and 0.3GeV ERL. Coherent fraction expected from ERL. It is possible to achieve the values of 10-20% at the energy range of 10keV.

Scientific cases at PF-ERL

- Scientific subject opened by coherent X-rays #Structural analysis of non-crystalline materials #Phase contrast imaging #Investigation at the fluctuation of several domains by means of X-ray photon correlation spectroscopy
- Scientific subjects opened by short pulses (sub-pico second) #Investigation of non-equilibrium dynamics. #Study of spin dynamics in material. #Chemical reaction.
 #Photo-induced phase transition and related materials #Reaction process at protein (life science)
- Scientific cases opened by nano beam #Combination with the other general experimental method.

Local structural analysis, Local electronic state, Microscopic studies, Structural analysis of small crystals (~100 nm), etc.

Photo-induced phase transition (Strongly-Correlated Electron Systems)

Koshihara et.al. (Tokyo Institute of Tech.)

Structure of the ERL Project Office

R&D Plan towards the ERL Light Source

Development of key components

- DC photocathode gun (R. Hajima)
- 1.3GHz CW laser (R.Hajima (M. Kuriki))
- Superconducting cavities and cryomodules (H.Sakai (S. Noguchi), M. Sawamura (T. Furuya))
- Beam dynamics (S. Sakanaka) (

ERL test facility

- Testing critical components under beam operations
- Generation and acceleration of ultra-low emittance beams
- Investigation of accelerator physics issues (CSR, beam losses etc.)

Testing SC cavities for main linac, Studying the instabilities.

Return loop is necessary

Site for the ERL Test Facility

Plan for ERL Test Facility

Tentative parameters

Injection energy	5 MeV (10-15 MeV)			
Injector beam power	500 kW (1 MW)			
Beam energy in arcs	~60 MeV (160-200 MeV)			
SC cavities for main	9cells \times 4: single module			
linac	(two modules)			
Normalized emittance	1 mm·mrad (0.1 mm·mrad)			
Beam current	10 mA ? (100 mA)			
Rms bunch length	Usual mode : $\sigma_{\tau} = 1-2 \text{ ps}$			
	Short bunch mode: $\sigma_{\tau} \sim 100$ fs?			
Test undulator	No undulators			
	(with an undulator)			

Initial goals. Final goals are in ().

New Site for the ERL Test Facility?

Goo

上空

Neutron Science Bldg.

C 2007 Europa Technologies Image C 2007 Digita(Globe

Google

上空 1.68 km

ポインタ 36°09'05:13″N 140°04'21.50″E 高度 31 m ストリーミング !!!!!!!!! 1

© 2007 Europa Technologies Image © 2007 DigitalGlobe

● 2007 ZENRIN ポインタ 36°09'05.13″N 140°04'26.14″E 高度 31 m ストリーミング |||||||||||100%

Plan for ERL Test Facility in PS East Expt. Hall

Time Schedule of the ERL Project

	2006	2007	2008	2009	2010	2011
ERL Prototype Design						
Development of key components					• • • • • • • • • • • • • • • • • • • •	•••••
Construction						
Commissioning						
5GeV ERL Design						
Construction	The budget has not been approved yet!					

- 1) Construction of a 60~200MeV class ERL (prototype).
- 2) Demonstration of the principle of the ERL until 2010.
- 3) We shall start construction of 5 GeV class ERL from ~2011.
- 4) We hope to start the user operation of ERL from ~2015.

Summary

- ERL is one of the most promising candidate for future light source.
- ERL project has been progressed under the collaboration with KEK, JAEA, ISSP and other facilities.
- To resolve technical & physical challenges, an ERL test facility is under consideration at KEK.
 - To test critical components under beams
 - To generate and accelerate ultra-low emittance beams
 - To investigate accelerator physics issues
- The ERL test facility will consist of a 5-10MeV injector, 1-2 cryomodules, a return loop and a beam dump. The energy will be 60 200 MeV.
- Design of the test ERL is underway.
- R&D for the DC photocathode gun (at JAEA) and for the SC cavities (at KEK) were started.