Present status of ERL project at KEK

Mini-Workshop for ERL under the collaboration meeting between CLASSE and KEK
12/March/2007

H. Kawata

ERL Project Office, High Energy Accelerator Research Organization

Outline
1) What is the requirement for the future light source?
2) Scientific cases at the ERL
3) ERL project team
4) Present status of the R&D for the ERL project
What is the requirement for the future light source?

1) Specimen becomes smaller and smaller (nano-structure)
   
   Focused beam size: $\mu$m $\rightarrow$ nm

2) Detailed information about electronic states
   
   Higher Energy resolution

3) Structural analysis of non-crystalline materials

   Coherent X-ray is essential!

4) Studies for non-equilibrium states

   Short pulse (sub-pico second) is essential!

High brilliant light source for general use

Coherence and short pulse for cutting-edge science

It is important to realize both of them!
What kinds of accelerator are needed?

- High brilliant light source for general use
- Coherence and short pulse for cutting-edge science

Electron bunch

3rd generation storage ring

Further bright light source (horizontally and longitudinally)
Specification of the synchrotron radiation from the future light source

Energy region: VUV-X (30eV-30keV)
Brilliance: $10^{21}-10^{23}$ photons/sec/mrad²/mm²/0.1%B.W. @1~10 keV
Coherent fraction: 10~20%@ 10keV
Emittance: $10\text{pmrad} \sim \frac{\lambda}{4\pi} @ 10\text{keV}$
Short pulse: $\sim 100$ fs
Number of ID beamlines: $\sim 30$ lines

ERL is one of the most promising candidates

#) Linac based light source:
1) Emittance can be improved by a factor of $1/\gamma$ from a natural emittance.
2) Short pulse of the order of 0.1~1 pico-second can be available.
#) A great numbers of ID-beamlines can be available.
#) ERL will not provide extremely high peak brilliance, but high averaged brilliance. This feature will be suitable to keep a character for the proving light source as an usual synchrotron radiation experiments.

http://erl.chess.cornell.edu/
Preliminary design of PF-ERL at 2002

<table>
<thead>
<tr>
<th></th>
<th>PF-ERL undulator @ 5 GeV</th>
<th>SPring-8 undulator @ 8 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Beam current</strong></td>
<td>100 mA</td>
<td>100 mA</td>
</tr>
<tr>
<td><strong>Undulator length</strong></td>
<td>30 m</td>
<td>5 m</td>
</tr>
<tr>
<td><strong>Source size (μm)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horizontal</td>
<td>37.8</td>
<td>18.2</td>
</tr>
<tr>
<td>vertical</td>
<td>37.8</td>
<td>18.2</td>
</tr>
<tr>
<td><strong>Source div. (μrad)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horizontal</td>
<td>4.1</td>
<td>9.8</td>
</tr>
<tr>
<td>vertical</td>
<td>4.1</td>
<td>9.8</td>
</tr>
<tr>
<td><strong>Beam size @ 50 m (μm)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horizontal</td>
<td>244</td>
<td>510</td>
</tr>
<tr>
<td>vertical</td>
<td>244</td>
<td>510</td>
</tr>
<tr>
<td><strong>Average brilliance (ph/s/0.1%/mm²/mr²)</strong></td>
<td>6.0×10²³</td>
<td>7.6×10²²</td>
</tr>
<tr>
<td>% beam coherence</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

At the case of 8 keV photon energy
Size of 5-GeV class ERL
Brilliance and coherent fraction spectra from ERL(5GeV, 0.3GeV)

It is possible to cover the energy range from VUV to X-ray by using 5GeV ERL and 0.3GeV ERL.

Coherent fraction expected from ERL. It is possible to achieve the values of 10-20% at the energy range of 10keV.
Scientific cases at PF-ERL

• Scientific subject opened by coherent X-rays
  #Structural analysis of non-crystalline materials
  #Phase contrast imaging
  #Investigation at the fluctuation of several domains by means of X-ray photon correlation spectroscopy

• Scientific subjects opened by short pulses (sub-pico second)
  #Investigation of non-equilibrium dynamics.
  #Study of spin dynamics in material.
  #Chemical reaction.
  #Photo-induced phase transition and related materials
  #Reaction process at protein (life science)

• Scientific cases opened by nano beam
  #Combination with the other general experimental method.

  Local structural analysis, Local electronic state, Microscopic studies, Structural analysis of small crystals (~100 nm), etc.
Photo-induced phase transition
(Strongly-Correlated Electron Systems)

Sub-pico second Photo-induced metal-insulator phase transition
- Application for a THz-switching device -

ERL will provide us following information!!

Structure?
(X-ray diffraction)

Electronic state?
(Photo-emission spectroscopy)

Domain formation?
(X-ray Photon Correlation Spectroscopy)

Collet et al. (2005) Science 307, 86
Koshihara et.al. (Tokyo Institute of Tech.)
The members of the ERL project office consist of the staff at KEK, JAEA, ISSP and other facilities. The office organizes the ERL project team, which consists of several working groups to design and develop the components of ERL and to brush up the scientific case of ERL.
R&D Plan towards the ERL Light Source

Development of key components

- DC photocathode gun (R. Hajima)
- 1.3GHz CW laser (R. Hajima (M. Kuriki))
- Superconducting cavities and cryomodules (H. Sakai (S. Noguchi), M. Sawamura (T. Furuya))
- Beam dynamics (S. Sakanaka)

ERL test facility

- Testing critical components under beam operations
- Generation and acceleration of ultra-low emittance beams
- Investigation of accelerator physics issues (CSR, beam losses etc.)

Testing SC cavities for main linac, Return loop is necessary
Studying the instabilities.
Site for the ERL Test Facility

Cold neutron building

KEKB Control Building

Service entrance 3
Plan for ERL Test Facility

Maximum current: 100 mA
Beam energy: 60 – (200) MeV

Normalized emittance: 1 – 0.1 mmmrad
Injection energy: 5 MeV (10 MeV)
## Tentative parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection energy</td>
<td>5 MeV (10-15 MeV)</td>
</tr>
<tr>
<td>Injector beam power</td>
<td>500 kW (1 MW)</td>
</tr>
<tr>
<td>Beam energy in arcs</td>
<td>~60 MeV (160-200 MeV)</td>
</tr>
<tr>
<td>SC cavities for main linac</td>
<td>9 cells × 4: single module</td>
</tr>
<tr>
<td></td>
<td>(two modules)</td>
</tr>
<tr>
<td>Normalized emittance</td>
<td>1 mm·mrad (0.1 mm·mrad)</td>
</tr>
<tr>
<td>Beam current</td>
<td>10 mA ? (100 mA)</td>
</tr>
<tr>
<td>Rms bunch length</td>
<td>Usual mode: $\sigma_t = 1$-2 ps</td>
</tr>
<tr>
<td></td>
<td>Short bunch mode: $\sigma_t \sim 100$ fs?</td>
</tr>
<tr>
<td>Test undulator</td>
<td>No undulators</td>
</tr>
<tr>
<td></td>
<td>(with an undulator)</td>
</tr>
</tbody>
</table>

Initial goals. Final goals are in ( ).
New Site for the ERL Test Facility?
Plan for ERL Test Facility in PS East Expt. Hall
## Time Schedule of the ERL Project

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ERL Prototype</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of key components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>5GeV ERL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The budget has not been approved yet!*

1) Construction of a 60~200MeV class ERL (prototype).
2) Demonstration of the principle of the ERL until 2010.
3) We shall start construction of 5 GeV class ERL from ~2011.
4) We hope to start the user operation of ERL from ~2015.
Summary

• ERL is one of the most promising candidate for future light source.
• ERL project has been progressed under the collaboration with KEK, JAEA, ISSP and other facilities.
• To resolve technical & physical challenges, an ERL test facility is under consideration at KEK.
  – To test critical components under beams
  – To generate and accelerate ultra-low emittance beams
  – To investigate accelerator physics issues
• The ERL test facility will consist of a 5-10MeV injector, 1-2 cryomodules, a return loop and a beam dump. The energy will be 60 – 200 MeV.
• Design of the test ERL is underway.
• R&D for the DC photocathode gun (at JAEA) and for the SC cavities (at KEK) were started.