## **Present status of ERL project at KEK**

PF-ISAC, 3-4/April/2007

#### <u>H. Kawata</u>

ERL Project Office, High Energy Accelerator Research Organization

#### Outline

- 1) What is the requirement for the future light source?
- 2) Scientific cases at the ERL
- 3) Present status of the R&D for the ERL project

Dr. Kasuga will present details about the development for key components



#### What is the requirement for the future light source?

1) Specimen becomes smaller and smaller (nano-structure)

Focused beam size:  $\mu m \longrightarrow nm$ 

2)Detailed information about electronic states

**Higher Energy resolution** 

3) Structural analysis of noncrystalline materials

**Coherent X-ray is essential!** 

4) Studies for non-equilibrium states

Short pulse (sub-pico second ) is essential!

High brilliant light source for general use

Coherence and short pulse for cutting-edge science

It is important to realize both of them!

## What kinds of accelerator are needed?



## Specification of the synchrotron radiation from the future light source



### **ERL** is promising!

#) Linac based light source:

1) Emittance can be improved by a factor of  $1/\gamma$  from a natural emmitance .

2) Short purse of the order of 0.1~1 pico-second can be available.

#) A great numbers of ID-beamlines can be available.

#) ERL will not provide extremely high peak brilliance, but high averaged brilliance. This feature will be suitable to keep a character for the proving light source as an usual synchrotron radiation experiments.



|                                                                 |            | PF-ERL undu          | lator @ 5 GeV        | SPring-8 undulator @ 8 GeV |                      |
|-----------------------------------------------------------------|------------|----------------------|----------------------|----------------------------|----------------------|
| Beam current                                                    |            | 100 mA               | 100 mA               | 100 mA                     | 100 mA               |
| Undulator length                                                |            | 30 m                 | 5 m                  | 25 m                       | 5 m                  |
| Source size                                                     | horizontal | 37.8                 | 18.2                 | 892                        | 892                  |
| ( µm )                                                          | vertical   | 37.8                 | 18.2                 | 22.8                       | 10.6                 |
| Source div.                                                     | horizontal | 4.1                  | 9.8                  | 37.4                       | 38.4                 |
| ( $\mu$ rad)                                                    | vertical   | 4.1                  | 9.8                  | 4.3                        | 10                   |
| Beam size @ 50 m                                                | horizontal | 244                  | 510                  | 2761                       | 2813                 |
| ( µm )                                                          | vertical   | 244                  | 510                  | 236                        | 509                  |
| Average brilliance(ph/s/0.1%/mm <sup>2</sup> /mr <sup>2</sup> ) |            | $6.0 \times 10^{23}$ | $7.6 \times 10^{22}$ | $2.2 \times 10^{21}$       | $5.0 \times 10^{20}$ |
| % beam coherence                                                |            | 19                   | 15                   | 0.14                       | 0.13                 |

At the case of 8 keV photon energy



## Size of 5-GeV class ERL



# Brilliance and coherent fraction spectra from ERL(5GeV, 0.3GeV)



It is possible to cover the energy range from VUV to X-ray by using 5GeV ERL and 0.3GeV ERL. Coherent fraction expected from ERL. It is possible to achieve the values of 10-20% at the energy range of 10keV.

#### **P**F

## Scientific cases at PF-ERL

- Scientific subject opened by coherent X-rays #Structural analysis of non-crystalline materials #Phase contrast imaging #Investigation at the fluctuation of several domains by means of X-ray photon correlation spectroscopy
- Scientific subjects opened by short pulses (sub-pico second) #Investigation of non-equilibrium dynamics. #Study of spin dynamics in material. #Chemical reaction.

**#Reaction process at protein (life science)** 

• Scientific cases opened by nano beam #Combination with the other general experimental method.

Local structural analysis, Local electronic state, Microscopic studies, Structural analysis of small crystals (~100 nm), etc.

## Photo-induced phase transition (Strongly-Correlated Electron Systems)



Koshihara et.al. (Tokyo Institute of Tech.)



#### **Structure of the ERL Project Office**



## Progress of designing ERL machine

#### • Design meeting for ERL

The design meeting has been held once a month to fix the specification of the ERL test facility and check the items which have been designed by each working group from the view point of the overall design.

#### • Presentations of our project

May/2006: FLS2006 (Hamburg)

Aug./2006: Japanese Accelerator Conference (Sendai)

Aug./2006: Workshop for the future light source at Japan (Okazaki)

Nov./2006: Asia/Oceania Forum for Synchrotron Radiation Research (Tsukuba)

Jan./2007: Conference of Japanese Society for Synchrotron Radiation Research (Hiroshima)

Jan. /2007: KEK-DESY Collaboration Meeting (Hamburg)

Feb./2007: Asian Particle Accelerator Conference (Indore)

Mar./2007: Mini-Workshop for ERL under the collaboration meeting between CLASSE and KEK (Cornell, Ithaca)



# MOU with other facilities for collaboration to develop the ERL key components

- Mar./2006: with Japan Atomic Energy Agency.
- July/2006: with Institute of Solid State Physics of Tokyo University.
- Mar./2007: with CLASSE (Cornell Laboratory for Accelerator-based Sciences and education).

## **R&D** Plan towards the ERL Light Source

#### **Development of key components**

- DC photocathode gun
- 1.3 GHz CW laser
- Superconducting cavities and cryomodules
- Beam dynamics

#### **ERL test facility**

- Testing critical components under beam operations
- Generation and acceleration of ultra-low emittance beams
- Investigation of accelerator physics issues (CSR, beam losses etc.)

**Testing SC cavities for main linac, Return loop is necessary Studying the instabilities.** 



### Site for the ERL Test Facility





## Plan for ERL Test Facility

Maximum current: 100 mA Beam energy: 60 – (200) MeV Normalized emittance: 1 – 0.1 mmmrad Injection energy: 5 MeV (10 MeV)





# Tentative parameters

| Injection energy     | 5 MeV (10-15 MeV)                              |  |  |  |
|----------------------|------------------------------------------------|--|--|--|
| Injector beam power  | 500 kW (1 MW)                                  |  |  |  |
| Beam energy in arcs  | ~60 MeV (160-200 MeV)                          |  |  |  |
| SC cavities for main | 9-cells $\times$ 4: single module              |  |  |  |
| linac                | (two modules)                                  |  |  |  |
| Normalized emittance | 1 mm·mrad (0.1 mm·mrad)                        |  |  |  |
| Beam current         | 10 mA ? (100 mA)                               |  |  |  |
| Rms bunch length     | Usual mode : $\sigma_{\tau} = 1-2 \text{ ps}$  |  |  |  |
|                      | Short bunch mode: $\sigma_{\tau} \sim 100$ fs? |  |  |  |
| Test undulator       | No undulators                                  |  |  |  |
|                      | (with an undulator)                            |  |  |  |

Initial goals. Final goals are in ( ).



#### Time Schedule of the ERL Project

|                               | 2006   | 2007     | 2008    | 2009     | 2010                            | 2011                      |
|-------------------------------|--------|----------|---------|----------|---------------------------------|---------------------------|
| ERL test facility<br>Design   |        |          |         |          |                                 |                           |
| Development of key components |        |          |         |          | • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • |
| Construction                  |        |          |         |          |                                 |                           |
| Commissioning                 |        |          |         |          |                                 |                           |
| 5GeV ERL<br>Design            |        |          |         |          |                                 |                           |
| Construction                  | The bu | dget has | not bee | n approv | ved yet!                        |                           |

- 1) Construction of a 60~200MeV class ERL test facility
- 2) Demonstration of the principle of the ERL until 2010.
- 3) We shall start construction of 5 GeV class ERL from ~2011.
- 4) We hope to start the user operation of ERL from  $\sim 2015$ .

# Mini-Workshop for ERL as part of the collaboration meeting between CLASSE and KEK

CLASSE: Cornell Laboratory for Accelerator-based Sciences and Education

| Monday March 12 2007 |                                                                      |  |  |
|----------------------|----------------------------------------------------------------------|--|--|
| 9:00-9:10            | Opening remark (M. Tigner & H. Kawata)                               |  |  |
| 9:10-9:40            | Present status of ERL project at Cornell University (S. Gruner)      |  |  |
| 9:40-10:10           | Present status of ERL project at KEK (H. Kawata)                     |  |  |
| 10:10-10:30          | Break                                                                |  |  |
| 10:30-11:30          | Development of the electron gun and laser system                     |  |  |
|                      | R. Hajima (JAEA), B. Dunham (Cornell)                                |  |  |
| 11:30-12:30          | Development of the super-conducting cavity for pre-accelerator       |  |  |
|                      | H. Sakai (ISSP), H. Padamsee (Cornell)                               |  |  |
| 12:30-13:30          | Lunch                                                                |  |  |
| 13:30-14:30          | Beam dynamics (S. Sakanaka (KEK), I. Bazarov (Cornell))              |  |  |
| 14:30-15:30          | Developments of the superconducting cavity for main-accelerator      |  |  |
|                      | M. Sawamura (JAEA), M. Liepe (Cornell)                               |  |  |
| 15:30-15:50          | Break                                                                |  |  |
| 15:50-16:20          | Comments for the designing of the key components at KEK ERL Projects |  |  |
| 16:20-17:20          | Discussion about the collaboration items between CLASSE and KEK      |  |  |
| Tuesday March 13     |                                                                      |  |  |
| 09:00-               | Site visit at the ERL prototype of Cornell University                |  |  |



#### **Potential Collaboration Items:**

- 1. Input Couplers for Injector are there Japanese Companies?
- 2. Input Couplers for Main Linac are there Japanese Companies?
- 3. Assembly of Test Cryostat (1 Cavity) and/or 5 Cavity Injector Cryostat
- 4. Join with Daresbury, LBL, DESY, Cornell in 2x7 cell test at Daresbury
- 5. Participate in determining optimum shape for Main Linac Cavity
- 6. Development of economical HOM beamline load, damper materials
- 7. Photo Cathode Material exchange, photo-emission response?, time response? measure the same samples do the measurements agree?
- 8. Gun Ceramics + HV coatings, Russian supplier?, can we agree on common parameters (size, etc.), another geometrical design?
- 9. Laser pulse shaping deformable mirror, aspheric shaper, etc.

10. Beam diagnostics, exchange plans, 20 m/sec fast wire; high current, non-interceptive ideas

- 11. Beam dump design (how to dump 1 MW at 10 MeV for KEK design); (Hajima knows of 500 MW dump design)
- 12. Merger design
- 13. Exchange of ERL science case



## Summary

- ERL is one of the most promising candidates for future light source.
- ERL project has progressed under the collaboration with KEK, JAEA, ISSP and other facilities.
- To resolve technical & physical challenges, an ERL test facility is under consideration at KEK.
  - To test critical components using ERL beams
  - To generate and accelerate ultra-low emittance beams
  - To investigate accelerator physics issues
- The ERL test facility will consist of a 5-MeV injector, 1-2 cryomodules, a return loop and a beam dump. The energy will be 60 200 MeV.
- Design of the test ERL is underway.
- R&D for the DC photocathode gun (at JAEA) and for the SC cavities (at KEK) were started.