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OUTLINE

® Scaling Trend: End of Moore’s Law ?
® EUV Lithography: Present Status

® EUV-FEL as light source for EUV Lithography
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“Moore’s Law is Dead. Long Live Moore’s Law.”

Cover and Table of Contents of IEEE Spectrum, vol. 52, issue 4, April 2015
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Moore’s Law (G. E. Moore, 1965)

“The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year”
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Ref. Gordon E. Moore, Electronics vol. 38, no. 8, pp. 114-117, 1965
Reprint version: Proc. IEEE vol. 86, no. 1, pp. 82-85, 1998
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Moore’s Law after 40 years

(functions per chip, microprocessors)
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Functions /chip: 2x per 2 years
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End of Moore's Law?

Scaling Trend of Logic LSIs

2011 ITRS - Technology Trends

ITRS 2011
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End of Moore‘s Law?
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Scaling Trend of Logic LSIs

2011 ITRS - Technology Trends
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More Complex MOSFET Structure (ITRS 2015)
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Main scaling focus & performance boosters

Table M0t - More Woore Device Technology Roadmap

Lagic device techhology parming PTIM52 P52M36 PHM24 P32M16 P24M12 | P2AMA2VM | P24MI2V2 | P24MI12V3
Logic indpsty “Nods Range” Labeling (am) 614" M1M0™ g “Bi5" 43 325" 2.5 075"
Node prodaction years 3 3 3 3 3 3 3 =3
finFET
Device structure aptions finFFT finFFT finFET LGAA |UGAA, M3D|VGAA, M3D |VGAR, M3D [VGAA, M3D
FDSOI FDSOI LGAR
VGAA
Starting Substrate si, 501 si, 501 51,501, Si.501, 5i.501, Si.501, 51,501, 5i.501,

SRE, 0w SRE, QW SRB, oW SRE, QW SRE, 0w SREB, OW
s5i,sGe, | =9i,5Ge, | s9i,s6e, | =5i,s0e, | =5, sGe,

Mechannel Si 851 s5i, Ge 1 - - ny -
Fechanne! Si Si,5iGe 51,51Ge 5i,51Ge Ge Ge Ge Ge
Channel formation Ftch Ftch, EPI Ftch, EPI1 Ftch, EPI Ftch, EPI1 Ftch, EPI Ftch, EP1 Ftch, EPI
Cantact material Silicide Low-SEH | Low-SBH | Low-SBH | Low-5BH | Low-SBH | Low-SBH | Low-SBH
. ) EPl EPl EP1 EM EFI EF
Contact intsgration EPI1 EPI WAC Wac WAC WAC WAC WaC

SCE SCE . .
Parasitics | Parasitics | LowVWdd | LowVvdd | LowVvdd | Low Wdd
Main performahee hooster finHeight | finHeight

vt Wt finHeight | finHeight i 30 30 30
Sealing oKz Perf Power Power Power Function Function Function Function
Channe! straih Yes Yes Yes Yes Yes Yes Yes Yes
S0 shrain Yes Yes Yes Yes Yes Yes Yes Yes
o . Ballistic Ballistic
. _ Ballistic Ballistic
Transport scheme DD Ouas=i Quasi | polistic | TFET, JFET, | TEET, JFET, |1V E 12 JFET. | TFET, JFET,

Ballistic Ballistic HCMOS, HCMOS,

Spin Spin

HCHMOS HCMOS

« Increasing Functions/$ is the main focus

» Added new node naming nomenclature (e.g. P70M52) since pitch scaling is not directly
representing node itself

« 2014-2018 (N14, N10) focus on SCE, Weff scaling, cell height reduction
- 2018-2022 (N7 and N5) focus on parasitics, Weff scaling, active utilization in standard cell
« 2022-2030 (N3 and beyond) focus on ultra low-Vdd and 3D integration

Work in Progress — Not for Distribution
More Moore FT, ITRS summer meeting, Stanford Univ., Palo Alto, CA, USA, July 11-12, 2015
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Scaling of MOSFET

Table MMOL1 - More Moore - Logic Core Device Technology Roadmap

MPU/SoC Metalx ¥z Pitch (nm)[1,2]

MPU/SoC Metal0/1 %2 Pitch (nm) 28.0 18.0 12.0
Contacted poly half pitch (nm) 35.0 24.0 21.0
L 4: Physical Gate Length for HP Logic (nm) [3] 24 18 14
L 4: Physical Gate Length for LP Logic (nm) 26 20 16

finFET: fin Field Effect Transistor
LGAA: Lateral Gate-All-Around
M3D: Monolithic 3 Dimensional

FDSOI: Fully Depleted Silicon On Wafer
VGAA: Vertical Gate-All-Around

Logic device technology naming P70M56 P48M 36 P42M 24 P32M20 P24M12G1 | P24M12G2 | P24M12G3

Logic industry "Node Range" Labeling (nm) "16/14" "11/10" "8/7" "6/5" "4/3" "3/2.5" "2/1.5"

Logic devi truct ti finFET finFET finFET fl_lgl,:AEAr VGAA, VGAA, M3D | VGAA, M3D
ogic device structure options FDSO FDSO LGAA o M3D , ,

Source: ITRS 2015 Edition, “More Moore” Chapter, Table MMO1
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3D Cell Arrays of NAND Flash Memories

Charge
Trap Cell Floating Gate Cell
(Samsung) (intel / Micron)
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Rayleigh’s Formula

A
P R (nm) k4 (nm) NA
R = kl — 193
NA 64 0.31 (AF) 0.93
37 0.26 (i\?g) 1.35
R: Resolution (nm)
k,: Constant 12 0.30 (éﬁ\% 0.33
A: Wave Length (nm) g
NA: Numerical Aperture 7.9 0.30 (EUV) 0.51
7.3 0.30 13.5 0.55

(EUV)
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EUV Lithography Tools in AIST SCR

Source: S. Magoshi, et al,, “Recent status of the High-NA Small Field Exposure Tool (HSFET) at EIDEC,”
2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016
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Variable NA — NAO.33 vs. NAO.51

Source: S. Magoshi, et al,, “Recent status of the High-NA Small Field Exposure Tool (HSFET) at EIDEC,”
2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016
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HSFET Image Contrast (Simulation)

Source: S. Magoshi, et al,, “Recent status of the High-NA Small Field Exposure Tool (HSFET) at EIDEC,”
2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016
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Imaging Performance - Quad. lllumination

®

Source: S. Magoshi, et al,, “Recent status of the High-NA Small Field Exposure Tool (HSFET) at EIDEC,”
2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016
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Imaging Performance - Dipole for 11nm L/S

Source: S. Magoshi, et al,, “Recent status of the High-NA Small Field Exposure Tool (HSFET) at EIDEC,”
2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016
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Imaging Performance - Leaf Dipole for 8nm L/S

Source: S. Magoshi, et al,, “Recent status of the High-NA Small Field Exposure Tool (HSFET) at EIDEC,”
2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016
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“10nm Technology” of Samsung

Gate pitch 64 nm 78 nm

CA pitch 64 nm 78 nm

Active Contact Width 18 nm 20 nm

M1, Mx (Metal Interconnect) 48 nm 64 nm
pitch

e Metal (M1, Mx) half pitch: 24 nm
e Lithography Tool: ArF immersion (ArF-i)

Ref: H.-J. Cho, et al, 2016 Symposium on VLS| Technology, Digest
of Technical Papers, pp.14-15, 2016.
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“7 nm Technologies” in IEDM 2016

e |IBM, GLOBALFOUNDRIES, and Samsung:
— Poly Si (contacted): 44nm / 48 nm pitch (ArF-i)
— Metal interconnect: 36nm pitch (EUV)
— EUV lithography for Metal Interconnect
e TSMC:
— SRAM cell size: 0.027 um?
— ArF immersion (ArF-i) lithography
(R&D with EUV Lithography, too)

Ref: IEDM Technical Digest, 2016
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IEDM 2016, #2.6, IBM/GF/Samsung

Ref. IEDM Technical Digest, 2016
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IEDM 2016,

2.6, IBM/GF/Samsung

Ref. IEDM Technical Digest, 2016
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2016 EUVL Symposium: Highlights

Source

v' 70% average availability achieved. (champion: 90%
per 4wks)

v/ 1500 wpd demonstrated but consistency is the next
challenge.

Resist

v’ Sensitivity and LER/LCDU are far from targets.

v’ Stochastic variation needs to be addressed for
current and future materials.

Source: “Closing Address,” 2016 International Symposium on Extreme Ultraviolet
Lithography, Hiroshima, Japan, Oct. 26, 2016
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2016 EUVL Symposium: Highlights

Mask

v’ Very positive year (ABI optic upgraded, AIMS tool
shipped).

v’ Blank suppliers making progress (0 defect blanks
possible).

v’ Infrastructure gap for pattern mask inspection.

Pellicle (keeping mask clean)
v’ Good progress but very far to go for HVM readiness.

v’ Need industry focus to bring all the required
components together.

Source: “Closing Address,” 2016 International Symposium on Extreme Ultraviolet
Lithography, Hiroshima, Japan, Oct. 26, 2016
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2016 EUV Focus Areas

Key Focus Areas Rank* | StdDev
Reliable source operation with > 85% availability 2.00 1.09
Resist resolution, sensitivity & LER met simultaneously 214 1.01
Keeping mask defect free ( by pellicle and affiliated
: 2.36 0.88
infrastructure )
Mask vield & defect inspection/review infrastructure 3.50 0.78

*) Average of 22 steering committee members’ votes
1 being the most critical

Source: “Closing Address,” 2016 International Symposium on Extreme Ultraviolet

Lithography, Hiroshima, Japan, Oct. 26, 2016
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EUV Focus Areas

Source: “Closing Address,” 2016 International Symposium on Extreme Ultraviolet
Lithography, Hiroshima, Japan, Oct. 26, 2016
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EUV-FEL (Free Electron Laser)

Source: H. Kawata, “Strategy to realize the EUV-FEL high power light
source,” 2016 International Symposium on Extreme Ultraviolet Lithography,
7 =9 Hiroshima, Japan, Oct. 24, 2016 41



Potential Problems in EUV-FEL

e R&D expense to develop EUV-FEL
— Who pays the cost? International collaboration necessary.
— When and where available?
e Cost of ownership
— to be less expensive than existing EUV source
e Foot print
e Stable operation
— two beam lines are necessary for back up

e Generation of radioactive materials due to high energy electron
irradiation

e High peak power
— potential damage in mirrors and reticles
— Resist

e Too coherent EUV light

A EIOEC
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Tradeoff: Resolution vs Sensitivity

Low sensitivity is acceptable if higher EUV source power is available.

Ref: 2016 International Symposium on Extreme Ultraviolet
Lithography, Hiroshima, Japan
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Summary

e Scaling limit is 10nm for MOSFET gate length; 6nm
for metal interconnect, according to ITRS 2015.

e Performance and degree of integration will be
getting better by using new device structures, new
materials, 3D device structure, 3D assembly &
packaging, etc. even if we reach the scaling limit

e EUV lithography will be used in mass production tool
for 7nm or 5nm logic products and beyond.

e EUV-FEL is a possible solution as an EUV source with
higher average power than 1 kW. Its cost of
ownership, peak power, coherence of the EUV-FEL

source might be the potential problems to be solved
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