

ASML

EUV Lithography Industrialization and future outlook

Junji Miyazaki ASML Japan

EUVL FEL Workshop December, 2015

Outline

NXE Roadmap

- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system

EUV extension roadmap

Public Slide 3 12/13/2016

Roadmap: October 2016

EUV reduces multi-pattern process complexity

Process steps per layer

ASML

Public Slide 4 12/13/2016

LE3=Litho+Etch+Litho+Etch

7 nm study with leading Logic chip maker projects lower wafer cost for EUV based processes

Cost per wafer calculated for ASML cost model, all process steps

Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system

Demonstrated 85 wafers per hour on NXE:3350B

Achieved with 125W source configuration

Public Slide 8 12/13/2016

NXE:3350B ATP test: 26x33mm2, 96 fields, 20mJ/cm2

7 systems achieved over 80% availability (4 wk average) Consistency to be improved

Public Slide 9 12/13/2016

Graph showing the maximum availability of each system over a 4 week period

Productivity improvement also available to customers 3-day average of >1500 WpD achieved on NXE:3350B

Slide 10 12/13/2016

Open Innovation Platform®

Source: L.J. Chen (TSMC), EUVL Symposium, Hiroshima, Japan (24-26 Oct 2016).

Third generation Droplet Generators: average lifetime ~600 hours. Achieved >1000 hrs on multiple systems at multiple customers

Public Slide 12 12/13/2016

Typical collector lifetime improved by factor 1.5 in 2016 Data from 80W configuration in the field **Public** Slide 13 250W configuration 12/13/2016 (development source) Reflectivity [%] -0.1%/Gp Reflectivity [%] -0.6%/Gp (SPIE 2016) -0.4%/Gp (EUVL 2016) Gigapulse

Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system

NXE:3400B illuminator: increased pupil flexibility at full throughput

2D clips: pitch 32nm in x- and y- direction, k_1 =0.39 Better pattern fidelity with lower Pupil Fill Ratio

Pupil Fill Ratio=40%

SPIE 9776, Jo Finders "Contrast optimization for 0.33NA lithography" Exposures done on a NXE:3350B system. On NXE:3350B, 20% PFR leads to loss of light.

ASML

Public Slide 16 12/13/2016

Matched Machine Overlay 1.8nm, meets NXE:3400B specification NXE:3400B overlay improvements include calibrations and new wafer table

Public Slide 17

NXE:3400B-like system. Matching to etched reference wafers exposed on immersion

Productivity roadmap towards >125 WPH in place

Throughput at targeted availability (>90%) sufficient for HVM insertion

Public Slide 18

Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system

High-NA: large resolution step in line with our history

New product introductions providing step in resolution λ/NA , um

ASML

Slide 20

Overview main System Changes High-NA tool

ASML

Public Slide 21

EUV Optical Train

Public Slide 22 12/13/2016

Anamorphic magnification solves the problem at the mask

Public Slide 23 12/13/2016

Angle of incidence on the mask [deg]

High-NA >0.5NA 4x/8x anamorphic magnification Chief Ray Angle at Mask can be maintained

The pattern at the mask will be 2x larger \rightarrow Scanner prints half fields

Anamorphic optics are used in cinematography "Don't change the mask"

Anamorphic Camera

16x9

"The Mask" (24x36mm²)

16x9

Anamorphic Projector

Imaging verification of the new Half Field concept Logic N5 clip Metal-1, 11nm lines, SMO is done at 8x

Public Slide 26 12/13/2016

Aerial Image Intensity in Hyperlith

Note: pictures at same scale, smaller mask reflection is also visible

High-NA Anamorphic Lens prints a half field

By utilizing the current 6" mask

ASML

Public Slide 27 12/13/2016

High-NA anamorphic Half Field concept

Faster stages enable high productivity

Half Field yields 2x more fields

 2x wafer stage acceleration maintains overhead while going to twice number of scans

Y-magnification $4x \rightarrow 8x$

2x wafer acceleration results in 4x mask acceleration

Acceleration of wafer stage ~2x

Acceleration of mask stage ~4x

High-NA Field and Mask Size productivity

Public Slide 29 12/13/2016

WS, RS current performance WS 2x, RS 4x

High-NA Half Field scanner
needs 500W for
150wph at 60mJ/cm²

High-NA calls for tight focus control

High-NA scanner will be introduced in line with focus scaling

Rayleigh

$$DoF = k_2 \frac{\lambda}{NA^2}$$

Way forward to 30 nm focus control

12/13/2016

Summary

Slide 32 12/13/2016

EUV into production in 2018-2019

- More than 1,500 wafers per day (WpD) exposed on a NXE:3350B at a customer site on average over three days at 85WpH configuration. Roadmap in place to secure >125WpH
- Best performance is four-week average above 90% on a NXE:3300B system
 - consistency between tools and across sites still needs to be significantly improved
 - Roadmap to >90% availability, with consistent performance, in place
- ASML expects that customers will take EUV into production in 2018-2019 timeframe

High-NA extends Moore's Law into the next decade

- New anamorphic concept enables good imaging with existing mask infrastructure resulting in a Half Field image
- New stages technologies and high transmission optics enables cost effective lithoscaling
- On going feasibility studies support design targets

ASML