EUV Lithography Industrialization and future outlook

Junji Miyazaki
ASML Japan

EUVL FEL Workshop
December, 2015
Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system
EUV extension roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>55 WPH</th>
<th>125 WPH</th>
<th>145 WPH</th>
<th>185 WPH</th>
<th>Overlay [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>NXE:3300B</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2015</td>
<td>NXE:3350B</td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>2017</td>
<td>NXE:3400B</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

- **At customer upgradable**
- **New platform**
- **High NA**
- **products under study**

Roadmap: October 2016
EUV reduces multi-pattern process complexity

Process steps per layer

LOGIC

- ArFi LE3
- ArFi LE4
- ArFi spacer grating w/ 2 cuts
- EUV single exposure

DRAM

- ArFi Cross-spacer
- EUV single exposure

LE3=Litho+Etch+Litho+Etch+Litho+Etch
7 nm study with leading Logic chip maker projects lower wafer cost for EUV based processes

<table>
<thead>
<tr>
<th>Design</th>
<th>Critical litho</th>
<th>Total Wafer Processing Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system
NXE:3350 Imaging: 16nm dense lines and 20nm iso space consistently achieve <1.0nm Full Wafer CDU at 80W source power

Overlay and focus performance NXE:3350B
Well in specification due to Hardware improvements and new calibrations
Demonstrated 85 wafers per hour on NXE:3350B
Achieved with 125W source configuration

- NXE:3350B ATP test: 26x33mm2, 96 fields, 20mJ/cm2
7 systems achieved over 80% availability (4 wk average)
Consistency to be improved

Graph showing the maximum availability of each system over a 4 week period
Productivity improvement also available to customers
3-day average of >1500 WpD achieved on NXE:3350B

Source: L.J. Chen (TSMC), EUVL Symposium, Hiroshima, Japan (24-26 Oct 2016).
EUV Source - Principle of operation

- Droplet Generator
- Vessel
- Collector
- Scanner
- CO2 system
- Power Amplifiers
- PP&MP Seed unit
- Source Pedestal
- Fab Floor
- Sub-fab Floor
- Scanner Pedestal
- Interior Focus Unit
- Vanes
- Tin catch
- Beam Transport
- metrology for source to scanner alignment

12/13/2016
Third generation Droplet Generators: average lifetime ~600 hours. Achieved >1000 hrs on multiple systems at multiple customers.

Type 3:
- capability of tin refill and restart
- enhanced particle elimination

- Average lifetime and maintenance time improved by factor >3

Droplet generator run 1400 hr as of Oct 2016

EUVL 2015
Typical collector lifetime improved by factor 1.5 in 2016
Data from 80W configuration in the field

-0.4%/Gp (EUVL 2016)
-0.6%/Gp (SPIE 2016)

Reflectivity [%]

250W configuration (development source)

Reflectivity [%]

Gigapulse

-0.1%/Gp
Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- **NXE:3400B**
- High NA EUV system
NXE:3400B illuminator: increased pupil flexibility at full throughput
2D clips: pitch 32nm in x- and y- direction, $k_1=0.39$
Better pattern fidelity with lower Pupil Fill Ratio

SPIE 9776, Jo Finders “Contrast optimization for 0.33NA lithography”
Exposures done on a NXE:3350B system. On NXE:3350B, 20% PFR leads to loss of light.
Matched Machine Overlay 1.8nm, meets NXE:3400B specification
NXE:3400B overlay improvements include calibrations and new wafer table

NXE:3400B-like system. Matching to etched reference wafers exposed on immersion
Productivity roadmap towards >125 WPH in place

Throughput at targeted availability (>90%) sufficient for HVM insertion

- Throughput at 20 mJ/cm²
- Target availability (>90%)

- Source power increase
- Transmission improvement
- Faster wafer swap

- Good progress in source power supporting productivity roadmap to >125 WPH
Outline

- NXE Roadmap
- NXE:33x0B litho performance and productivity
- NXE:3400B
- High NA EUV system
High-NA: large resolution step in line with our history

New product introductions providing step in resolution $\lambda/\text{NA}, \text{um}$

- Major technology step (e.g. source, mirror)
- Engineering optimization of numerical aperture resulting in a resolution step comparable to historical wavelength transitions
Overview main System Changes High-NA tool

- **Mask Stage**
 - 4x current acceleration
 - Same for REMA

- **Illuminator**
 - Improved transmission

- **Source**
 - Increased power

- **Lens**
 - NA 0.55, high transmission
 - Improved Thermal Control

- **Wafer Stage**
 - 2x current acceleration

- **New Frames**
 - Larger to support Lens

- **Improved leveling**
EUV Optical Train

- Reticle (mask)
- Field facet mirror
- Intermediate focus
- Plasma
- Pupil facet mirror
- Collector
- Wafer

Key-area where High-NA imposes large angles

W. Kaiser, J. van Schoot, Sematech Workshop on High-NA, 9 July 2013
Anamorphic magnification solves the problem at the mask

Multilayer Reflectivity

Reflectivity [%]

Angle of incidence on the mask [deg]

0.33NA – Mag 4x

0.55NA – Mag 4x/8x
High-NA >0.5NA 4x/8x anamorphic magnification
Chief Ray Angle at Mask can be maintained

- Anamorphic optics \rightarrow half field:
 8x Magnification in scan
 4x Magnification in other direction
- Chief ray angle ok \rightarrow Imaging ok

The pattern at the mask will be 2x larger \rightarrow
Scanner prints half fields
Anamorphic optics are used in cinematography
“Don’t change the mask”
Imaging verification of the new Half Field concept
Logic N5 clip Metal-1, 11nm lines, SMO is done at 8x

Aerial Image Intensity in Hyperlith

Note:
pictures at same scale, smaller mask reflection is also visible
High-NA Anamorphic Lens prints a half field
By utilizing the current 6” mask

Note: rectangular slit shown for illustration purposes
High-NA anamorphic Half Field concept
Faster stages enable high productivity

Half Field yields 2x more fields
• 2x wafer stage acceleration maintains overhead while going to twice number of scans

Y-magnification 4x → 8x
• 2x wafer acceleration results in 4x mask acceleration

Acceleration of wafer stage ~2x
Acceleration of mask stage ~4x
High-NA Field and Mask Size productivity
500W enables throughput of >150wph with anamorphic HF

Throughput for various source powers and doses

Throughput [300mm/hr]

Source Power/Dose [W/(mJ/cm²)]

WS, RS current performance
WS 2x, RS 4x

High-NA Half Field scanner needs 500W for 150wph at 60mJ/cm²
High-NA calls for tight focus control
High-NA scanner will be introduced in line with focus scaling

\[\text{DoF} = k_2 \frac{\lambda}{NA^2} \]

\[k_2 = 1 \]

Rayleigh

EUV depth of focus

focus control budget at introduction

High-NA
Way forward to 30 nm focus control

- **3300 performance**
- **Machine improvements (level sensor, stages, etc.)**
- **Optics improvements**
- **Product wafer flatness**
Summary

EUV into production in 2018-2019

- More than 1,500 wafers per day (WpD) exposed on a NXE:3350B at a customer site on average over three days at 85WpH configuration. Roadmap in place to secure >125WpH
- Best performance is four-week average above 90% on a NXE:3300B system
 - consistency between tools and across sites still needs to be significantly improved
 - Roadmap to >90% availability, with consistent performance, in place
- ASML expects that customers will take EUV into production in 2018-2019 timeframe

High-NA extends Moore’s Law into the next decade

- New anamorphic concept enables good imaging with existing mask infrastructure resulting in a Half Field image
- New stages technologies and high transmission optics enables cost effective litho-scaling
- On going feasibility studies support design targets