Free-electron laser "SACLA" and its basic

Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Light and Its Wavelength, Sizes of Material

Ordinal Laser, e.g. Helium Neon Laser

- Excite the orbital electrons of an atom by external light.
- Change an orbital energy level (Pump) to make a inverted distribution of the electrons.
- Generate stimulated emission by returning the electrons to the original energy level.
- The special features of this laser are monochromatic, coherent, pointing stability and small spot size.
- Fixed wavelength (Energy), pulse width and intensity (Pulse energy).

Principle of Mode-locked Laser

Radiation When Moving an Electron (Electromagnetic Wave Radiation)

Intensity Spectrum of Radiation

Electron

Undulator Principle

Electron Movement by Its Radiation (SASE)

Electron Radiation Angle in Undulator

The radiation angle from the electrons is $1/\gamma$.

The radiations form the behind electrons modulates the transvers motion of the advanced electron.

The straightness of the electron orbits are within 1.6 x 10E-4 rad, $1/\gamma$ @8 GeV.

Laser Brightness and Photon Energies of XFELs and Synchrotrons

Refernce

Springer Tracts in Modern Physics Volume 258 2014 Free-Electron Lasers in the

Ultraviolet and X-Ray Regime, 2nd Ed,

Physical Principles, Experimental Results, Technical Realization

Feature of FEL

- Electrons passing Undulated with the undulators emit the free-electron laser, FEL.
- The special features of FEL are monochromatic, coherent, pointing stability and small spot size.
- Variable wavelength (Energy), pulse width and intensity (Pulse energy) by the electron energy, the bunch compress, the K value (Magnetic field strength) of the undulator and the electron peak current.

SPring-8 Campus

RIKEN

SACLA Accelerator Main Components

500 kV low-emittance pulsed thermionic electron-gun C-band acceleration structures (37MV/m @SACLA)

Short-period in-vacuum undulators (K \sim 2.1)

Machine Configuration of SACLA

We have 2 laser sources, which are SACLA and SCSS+. They mainly comprise thermionic electron-guns, C-band acceleration structures, and in-vacuum undulators.

Measurement of Beam Bunch Length by the RF Deflector System

Temporal Electron Bunch Structures of BL3 and BL2

- Red: A peak current of the BL3 is ~10 kA at 8.0 GeV.
- Blue: A peak current of the BL2用 is ~1 kA at 6.3 GeV.

Specifications of BL3 and BL2

Number of undulators	22@BL3, 18@BL2
Undulator length	5 m
Number of period (undulator)	277
Minimum magnetic gap (undulator)	< 3.5 mm
Maximum K value (undulator)	< 2.85
Effective length of the beam line	~ 90 m
Output wave length	~ 0.08 nm@BL3 ~ 0.12nm@BL2
Electron beam energy	$\sim 8.5 \text{ GeV}$
Self seeding function	BL3

Present Laser Performance (BL3)

Simultaneous Double Electron Beam Energies Operation at the BL3 and BL2

Electron Peak Current: 1.2 kA, Pulse Width: ~150 fs FWHM, Repetition: 30 Hz at both Bl2 and BL3.

X-ray Pulse Energy

- An X-ray nominal pulse energy value is $0.6 \sim 0.7$ m.J. @ 10 keV
- Possible X-ray energies are from 5 keV \sim 15 keV.
- An electron bunch length is <15 fs (FWHM) measured with RF deflector. (A measurement accuracy is 12 fs limited by the natural emittance of the electron beam.)

700

600

500

400

300

200

100

0

4

5

6

7

8

q

Intensity [uJ]

5.8 GeV

6.8 GeV

Temporal Structure of Electron Beam observed with RF Deflector.

SCSS+ Configuration

AT : foil attenuator, GAT : gas attenuator, M : plane mirror (C coating/Si substrate) GM : gas monitor, VLS : varied line spacing grating

Specifications Comparison between SCSS and SCSS+

	SCSS	SCSS+
Operation period	2005 ~ 2013	2015 ~
Accelerator		
Beam energy	250 MeV	400 ~ 800 MeV
Bunch charge	~0.3 nC	~0.3 nC
Peak current	~300 A	~500 A
Repetition	60 pps (max.)	60 pps (max.)
Undulator		
Periodic length	15 mm	18 mm
K parameter	1.5 (max.)	2.1 (max.)
Photon Beamline		
Wavelength	50 - 60 nm	13 - 40 nm
Pulse energy	10-30 μJ/pulse	100 μJ/pulse

Temporal Bunch Structure Measurements by the RF Zero-cross Method and the Streak Camera

• We give energy modulation along the bunch at the RF zero-crossing point in the acceleration unit, CB1-3, and measure the energy distribution of the bunch at the BC2.

Streak Camera Case using OTR.

RF Zero-cross Method Case

4.2 mm (2σ)

4.2 mm, 2σ

Laser profile in the experimental hutch

Laser Spectra of the BL1

Intensity / a.u.

Center photon energy is ~42.5 eV. Spectrum width is ~1 eV in FWHM.

Summary

 The variable wavelength (Energy), pulse width and intensity of FEL, as which I already show you, is very important characteristics for users.

Thank you for your attention.