ERL-Based High-Power EUV-FEL Source (ERLを用いた高出力EUV-FEL光源)

Norio Nakamura High Energy Accelerator Research Organization (KEK)

Outline

- Introduction
- Energy Recovery Linac(ERL)
- Design of EUV-FEL Source
- Simulation
- Conclusions

Energy Recovery Linac (ERL)

Energy Recovery Linac(ERL)

Merits of ERLs

- Acceleration energy is almost recovered.
- Dumped beam power and activation are drastically reduced.

→ High average current (high beam power) can be achieved more easily.

Energy Recovery Linac(ERL)

JLab ERL-FEL

ERL FEL at Thomas Jefferson Laboratory(US)

- First kW-class FEL in the world, average current up to 10 mA
- IR-FEL: 1.7 kW@3.1 $\mu m(1999)$,14.3 kW@1.6 μm (2006) with oscillator

High-voltage

• UV-FEL: 124 nm (3rd harminics of 372 nm) with oscillator

Parameter	IR-FEL	UV-FEL	
Beam Energy	88 – 165 MeV	135 MeV	
Average Current	9.1 mA	5 mA	
Bunch Charge	135 pC	60 pC	
Norm. Emittance	8 mm·mrad	5 mm∙mrad	
Bunch Length	125 fs	100 fs	
Energy Spread	0.4 %	0.35 %	
Peak Current	400 A	250 A	
Bunch Frequency	74.85 MH	74.85 MHz (max.)	
		a sand	
		* Care	

Compact ERL(cERL) at KEK

- Demonstration of ERL potentials for future light sources
- Development of key technologies (photocathode gun, CW SC cavities, ...)

Recent Progress of cERL

(2) Beam loss reduction

Mitigation of beam halo by collimators at injector

Achievement of high beam current (~1 mA) with efficient energy recovery (~ 99.97 %)

by bunch compression in 1st arc

Design of EUV-FEL Source

Design Concept

• Target : 10kW power @ 13.5 nm, 800 MeV

 Use available technology without too much development

 Make the most of the cERL designs, technologies and operational experiences

Image of EUV-FEL Source

FEL Parameters

 $\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) \qquad \qquad K = K_y \quad \text{Linear-polarizing undulator} \\ K = \sqrt{2}K_x = \sqrt{2}K_y \quad \text{Circular-polarizing undulator}$

High average current, high peak current and low emittance are important. (Lower momentum spread is also required.)

Injector & Merger

Injector & Merger Design

Main Linac

Main Linac Design

	cERL	EUV FEL		cERL	EUV FEL
Frequency	1.3 GHz	1.3 GHz	Iris diameter	80 mm	70 mm
R _{sh} /Q	897 Ω	1007 Ω	$Q_o \times R_s$	289 Ω	272 Ω
E _p /E _{acc}	3.0	2.0	H _p /E _{acc}	42.5 Oe/(MV/m)	42.0 Oe/(MV/m)

Stable operation at 8.5 MV/m (cERL) → 12.5 MV/m (EUV-FEL)

Arc Sections & Chicane

Bunch Compression and Decompression Scheme

Design of Arc Sections

Design of Chicane

Four-magnet chicane for bunch compression

cERL chicane for path-length control

$$R_{56} = -\frac{4L_B}{\cos\theta} - \frac{4L_B^2L_D}{\rho^2\cos^3\theta} + 4\rho\theta$$

$$L_B = 1 \text{ m and } L_D = d = 0.51 \text{ m}$$

$$R_{56} = -0.15 \text{ m} \Rightarrow \rho = 4.1 \text{ m}, \theta = 0.246 \text{ rad}$$

$$R_{56} = -0.30 \text{ m} \Rightarrow \rho = 3.0 \text{ m}, \theta = 0.340 \text{ rad}$$

Undulator(FEL) Section

Undulator System for FEL

Circularly-polarizing undulator developed at KEK

Simulation

Injector & Merger

Optimization of Injection beam by simulation

Bunch charge: Q_b =60pC, Injection energy: E_{inj} =10.5 MeV, Bunch length: $\sigma_t \sim 1$ ps

Bunch Compression

FEL Performance

Bunch Decompression

Conclusions

- ERL is a suitable accelerator for high-power FELs.
- ERL-based EUV-FEL source has been designed with available technologies and its performance has been checked by computer simulation.
 - Generation of FEL power more than 10 kW at 10 mA in the designed EUV-FEL source
 - Successful transportation of electron beams throughout the EUV-FEL source without any beam loss
- Further design work and R&D will improve the source performance and enhance feasibility of the EUV-FEL source for lithography.

EUV-FEL Design Group

(KEK) T. Furuya, K. Haga, I. Hanyu, K. Harada, T. Honda, Y. Honda, E. Kako, Y. Kamiya, R. Kato, H. Kawata, Y. Kobayashi, T. Konomi, T. Kubo, S. Michizono, T. Miura, T. Miyajima, H. Nakai, N. Nakamura, T. Obina, K. Oide, H. Sakai, M. Shimada, R. Takai, Y. Tanimoto, K. Tsuchiya, K. Umemori, S. Yamaguchi, M. Yamamoto

(QST) R. Hajima

(Tohoku Unv.) N. Nishimori

The design study has been done under collaboration with a Japanese company.

EUV-FEL Light Source Study Group for Industrialization

Thank you for your attention!

Backup Slides

Effects of CSR

Generation of coherent synchrotron radiation(CSR) in bending sections

Arc sections/chicane should be designed so as to suppress CSR effects.

EUV/X-ray FELs

	LCLS	SACLA	FLASH	Euro-XFEL	LCLSII	EUV-FEL	
Type of linac	Normal conducting		Super conducting				
Operation mode	Pulse		Long pulse		CW		
Country	US	Japan	Germany	Germany	US		
ERL scheme	No	No	No	No	No	Yes	
Repetition rate	120	30~60	<5000	<27000	1M	162.5M	
Beam energy (MeV)	14300	6000~ 8000	1250	17500	4000	800	
Wavelength(nm)	0.15	0.08	4.2-52	0.05	~0.3	13.5	
Pulse energy(mJ)	~10	~10	<0.5	~10	~1	~0.1	
Average Power (W)	~1	~1	<0.6	~100	~1000	>10000	
Beam dump power(W)	~1.5k	~0.5k	~6k	~0.5M	~1M	~0.1M	
Status	Operation 2009	Operation 2011	Operation 2004	Construction 2017	Construction 2020	Planning	