Development of damageless EUV multilayer mirrors for high intensity EUV sources

Satoshi ICHIMARU

NTT Advanced Technology Corporation

EUV-FEL WORKSHOP 2016.12.13 @AKIHABARA UDX

Copyright© 2016 NTT Advanced Technology Corporation

EUV Lithography

EUV multilayer

- Structures consisting of alternating layers of high- and low-Z materials, with individual layers having thicknesses of the order of nanometers, can be fabricated on suitable substrates. - Bragg law's : 2 d sin $\theta = m\lambda$ -> high reflectivity.

TEM cross sectional TEM image of Mo/SiC multilayer

EUV-FEL WORKSHOP 2016.12.13 @AKIHABARA UDX

Copyright© 2016 NTT Advanced Technology Corporation

- Start of EUV multilayer research: 1970s~
- Research for thermal stability of EUV multilayer 1990s \sim

for X-ray sources such as SR, X-ray laser

 \Rightarrow Thermal effects make serious problems for EUV multilayer.

One example of high thermal stability EUV multilayer: Mo/Si multilayer with C barrier layer

H. Takenaka, T. Kawamura, J. Elec. Spec. and Rel. Phenom. 80(1996),p.381

TEM Cross Sectional TEM image of Mo/Si multilayer

- Ar

H. Takenaka, T. Kawamura, J. Elec. Spec. and Rel. Phenom. 80(1996),p.381

Examples of previous works

a) High resistance multilayer mirror							
✓ Mo/Si multilayer with a barrier layer	Takenaka OSA TOPS on EUVL, 4, 169 (1996)						
✓ Mo/Si multilayer with a capping layer	Bajt, Proc. SPIE 4506, 65 (2001)						
✓ High stacked Mo/Si Multilayer	Ichimaru, Proc. SPIE, 965814, 9658 (2015)						
b) the damage reduction mechanism							
✓ cooling substrate	Bozec, Proc. SPIE 7969, 79690A (2011)						
✓ low energy prepulses	Tao, J. Appl. Phys. 101, 023305 (2007)						
✓ gas curtain	Bollanti, Appl. Phys. B 76, 277 (2003)						
✓ magnetic fields	Ueno, Appl. Phys. Lett. 92, 211503 (2008)						
c) Cleaning of EUV mirror	Oizumi, 3rd EUVL Sympo., Co09 (2004, Miyazaki JAPAN)						

These methods are useful for the protection of EUV mirrors from thermal effect, ion attack, and contamination.

5

High power EUV light sources and ablations of EUV multilayers

High power and fluences EUV light sources, not only FELs but also LPPs, make some several problems. \rightarrow One of them is ablations of EUV multilayer.

 Past estimations for damage threshold of EUV multilayer for 13.5nm

 - A. R. Khorsand et al., Opt. Express, 18, 2 (2010) p.700

 Mo/Si ML :
 45 mJ/cm² @~10 fs

 - R. Sobierajski et al., Opt. Express, 19, 1 (2011) p.193

 MoN/SiN ML :
 48 mJ/cm² @~10 fs

 - M. Muller et al., Appl. Phys. A 108 (2012), p.263

 Mo/Si ML :
 200 mJ/cm² @~8.8 ns

 Mo/C/Si/C ML :
 260 mJ/cm² @~8.8 ns

⇒ Development of a high intensity EUV lights irradiation damageless multilayer for 13.5nm is needed.

<u>QST (National Institutes for Quantum and Radiological Science and Technology) & NTT-AT collaborates</u> for the development of high damageless EUV multilayer from Dec. 2014.

- \rightarrow We reported some conferences.
 - M. NIshikino, SPIE Optical Engineering + Applications 2015
 - M. Ishino et. al., OPIC-XOPT 2016
 - M. Nishikino, et.al., 15th ICXRL
 - S. Ichimaru et. al., EUVL Sympo. 2016

Collaborator

QST: Masaharu Nishikino, Masahiko Ishino, Noboru Hasegawa, Tetsuya Kawachi

NTT-AT: Satoshi Oku, Masatoshi Hatayama, Takashi Maruyama, Kazuhito Inokuma, Mika Zenba

Soft X-Ray Laser system @ GOST

EUV-FEL WORKSHOP 2016.12.13 @AKIHABARA UDX

Copyright© 2016 NTT Advanced Technology Corporation

Fabrication of Multilayer mirror

2016.12.13 @AKIHABARA UDX

- Beam size: on the sample: ϕ 30 μ m
- Beam intensity: 20~30mJ/cm² @ Zr filter 0.2µm

Characterization of irradiation damaged structure of Mo/Si multilayer samples

- Multilayer: Mo/Si
- Zr filter thickness: 0.1 μm.
- Shot number: 3shot.

Comparison for irradiated damage structure of Mo/Si, Nb/Si and Ru/Si multilayer samples

- Multilayer: Mo/Si, Nb/Si and Ru/Si multilayer
- Zr filter thickness: 0, 0.1, 0.2, 0.3 and 0.4 μm.
- Shot number: 1shot, 1 shot, 3 shots, 5 shots and 10 shots x 2 cycles
- Irradiated damaged structure was observed by SEM → Nb/Si is superior than the other multilayers for irradiation damage and thus X-ray multilayer.

<u>Mo/Si multilayer</u>						<u>Nb/Si multilayer</u>					<u>Ru/Si multilayer</u>				
	1	1	3	5	10	1	1	3	5	10	1	1	3	5	10
0 µm		A		#		55		. The second sec		-	1			Å,	Ą
0.1µm	2			Ŧ.	*				Ę		î	2	ŕ	*	*
0.2µm			4	Ŧ	•							9 	5 4	× ~	New.
0 µm			ġ.	*	* .			•p	5. 		ain is	×	Â		iq.
0.1µm	: 4		•	4	*				Sec. 1					*	*
0.2µm			2		*							1	•		A
														12	

Comparison for irradiated damage structure of Mo/Si, Nb/Si and Ru/Si multilayer samples (2)

- Enlarged SEM images of damages: damages caused by no filter and 10 shots
- Damage of all area of Nb/Si is similar to surrounding damages of Mo/Si and Ru/Si.
- The center damage of Mo/Si and Ru/Si is not almost shown in damage of Nb/Si.
- Irradiated damaged structure was observed by SEM \rightarrow Nb/Si is superior than the other multilayers for irradiation damage.

Damage depth of Mo/Si and Nb/Si multilayers

Summary

The irradiation damage tests for Mo/Si, Ru/Si and Nb/Si multilayer were carried .

Final target: the development of high resistance EUV multilayer mirror for the high fluences EUV lights

Recently, as becoming higher fluences of EUV lights

- $\rightarrow\,$ becoming a serious problem of irradiation damages of EUV MLs.
- \rightarrow This damage makes a non-stability and an unproductiveness of productions using these EUV MLs.

Experiment

- ✓ Samples; Mo/Si, Ru/Si, Nb/Si multilayers
- ✓ Irradiation damage test: 13.9nm EUV lights from SXRL
- \checkmark Evaluation: A DIC, a SEM, an AFM, and a TEM were used

<u>Results</u>

- \checkmark The irradiated damages of all multilayers were observed .
- ✓ TEM imaged of Mo/Si MLs shows not only a crater structure but also the destruction of the ML structure.
 - \rightarrow The area of a reduction for reflectivity of Mo/Si ML is larger than the area of creater.
- The irradiation damages of Mo/Si and Ru/Si MLs were observed using the 0.2 μm Zr filter, but that of Nb/Si MLs were not observed.
- ✓ The depth profile also shows that the damages of Nb/SI ML are smaller than Mo/Si ML.

 \rightarrow This result indicates that Nb/Si ML is superior than the other multilayers for irradiation damage.

15

Nb/Si MLs is the major candidate as a damageless EUV multilayer for for high intensity EUV sources, but we need more experiments.

- Estimation of damage threshold
- Why is the damage is caused ?
- Are there damages in multilayer when damage on the surface is not found ?
- High-Repetition
- Dependency of pulse duration.
- Actual usage
- In order to develop higher damageless EUV multilayer
 - -> Ex. Selection of barrier layer

16