

EUV-FEL WORKSHOP

250W LPP-EUV LIGHT SOURCE DEVELOPMENT FOR SEMICONDUCTOR HVM

Dec.13, 2016

EUV-FEL Workshop

Taku Yamazaki, Deputy General Manager, EUV Development Division, GIGAPHOTON INC.

Copyright © 2014 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice.

AGENDA

- Introduction
- Pilot Update (HVM target)
 - » Configuration & Key Component Technologies
 - » System is now in Operation
- Proto Update (>250W)
- Higher Power EUV Source Development
- Summary

How generate EUV light

Gigaphoton's LPP Light Source Concept

1. High CE

with pre-pulse technology

- 2. Powerful CO₂ laser with short pulse
- **3. Magnetic mitigation** of Tin debris
- 4. Accurate shooting control with droplet and laser
- 5. High efficient collector with out of band light reduction

Gigaphoton EUV Sources

5

AGENDA

- Introduction
- Pilot Update (HVM target)
 - » Configuration & Key Component Technologies
 - » System is now in Operation
- Proto Update (>250W)
- Higher Power EUV Source Development
- Summary

Pilot and Proto Systems Configuration

Operational S	opecification	Proto #1 Proof of concept	Proto #2 Power scaling	Pilot HVM readiness	
	EUV Power	25 W	> 100 W	250 W	
	CE	3%	3.5%	4%	
Terrect	Pulse rate	100 kHz	100 kHz	100 kHz	
larger	Output angle	Horizontal	62°upper (matched to NXE)	62°upper (matched to NXE)	
	Availability	1 week operation	1 week operation	> 75%	
	Droplet generator	20 – 25 μm	20 µm	< 20 µm	
	CO ₂ laser	5 kW	20 kW	27 kW	
lechnology	Pre-pulse laser picosecond		picosecond	picosecond	
	Debris mitigation	validation of magnetic mitigation	10 days	> 3 month	

Copyright © 2016 Gigaphoton Inc.

Pilot: High Power EUV Source for HVM

Evolution to Pilot (compared with Proto)

	1)CO2 Laser	②Pre-Pulse laser	3 DLG	④Debris Mitigation	Target
Proto	Trans. Gas Flow×1 Fast Axial Flow×3 20kW FAF CO2 laser ミラーガラス管 ガラス管 ミラー Gas flow プロワ 熱交換器 ガス流	Pico Second Pre- pulse laser CE≒3%	÷60m/s	Type-F Design > 100H	125W 100H ↓ 250W 100H
Pilot	Trans. Gas Flow×4 27kW <u>TGF CO2 laser</u> まラーレーザ光 放電電極 ガス流 ブロワ	Pico Second Pre- pulse laser	High Speed	Type-G Design > 1000H	250W 1000H
Copyright © 2016 Gigaphoton Inc	· · · · · · · · · · · · · · · · · · ·				IGAPHOTO

Pilot : EUV Chamber System (1)

EUV chamber system

Pilot : EUV Chamber System (2)

Pilot : EUV Chamber System (3)

Multiple control loop works simultaneously.

LPP EUV Source :

- ✓ Droplet control position & timing
- ✓ Laser axis control position/pointing with approx. 30 mirrors
- Laser trigger timing
- Energy dose control

Pilot : EUV Chamber System (4)

• High speed droplet generator was successfully released.

Pilot : EUV Chamber System (5)

- DLG lifetime extended to > 200 hours.
- Yield also improving.

Swapped due to tin empty

🛆 Scheduled swap

Pilot : Driver laser & PPL system (1)

Pilot : Driver laser & PPL system (2)

Pilot1: Driver laser & PPL system (3)

Pre-Pulse Technology (1)

Pre-pulse Different Technology **Deformation** pre-Droplet (liquid) Dome psec pulse like target laser main-Fine-mist Pre-pulse pulse (liquid) laser Plasma EUV light (gas) Emission Flat disk nsec like target **Sn Debris Mitigation** Pre-pulse 300um

Conversion Efficiency improved 400 um CO2 pulse enegy vs. EUV-CE 5.0 4.7% 4.5 EUV-CE average (%) 4.0 3.5 3% 3.0 2.5 Pre-pulse laser 2.0 ----- 10 ps 1.5 ---10 ns 1.0 0.5 0.0 50 100 150 200 0 CO2 laser pulse energy (mJ)

GIGAPHOTON

Pre-Pulse Technology (2)

Modeling nanosecond pre-pulses

~ 10 ps pre-pulse "Disk like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations Evolution of Sn density profile for 10 ns pre-pulse

"Advances in computer simulation tools for plasma-based sources of EUV radiation"

V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al.

¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia

² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia

³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

Pre-Pulse Technology (3)

Modeling picosecond pre-pulses

H. Mizoguchi, Dublin (2013)

RALEF simulations Evolution of Sn density profile for 10 ps pre-pulse

"Advances in computer simulation tools for plasma-based sources of EUV radiation" V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al. ¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia

² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia

³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

20

Pre-Rulse Technology (4)

2015/06/18, 水準No.PD80 DL25.7 um dia.

1st PPL :YVO4, 66um dia., 14ps, 2mJ, 58.5J/cm2 2nd PPL:Minilite, 383um dia., 6ns, 11.5mJ, 10.0J/cm2 CO2: 400um dia., 10ns, 66.6mJ, 53.0J/cm2

ized condition.

Experimental Device

Debris Mitigation Challenges (1)

Measurement of Sn deposition distribution at recent Proto#1configuration

- Purpose
 - » Evaluation of tin deposition distribution on the collector mirror
- Method
 - dummy collector mirror (no coating)
 - sampling plate
 size: 15mmx15mmx0.7mmt
 material :Si plate (46 pieces)
- Analysis after test
 - » surface condition :SEM
 - » deposited tin thickness :XRF

Debris Mitigation Challenges (2)

Improvement of less Sn deposition in Proto is going on

Copyright © 2016 Gigaphoton Inc.

Debris Mitigation Challenges (3)

Mitigation-Type G in Pilot

- Factor 1 Back Diffusion Countermeasure
 - H2 gas flow design
 Cooling system

Factor2 Offset shooting

- Countermeasure
 - I. Improve shooting accuracy

Evaluation in Pilot started.

Distribution of Sn density (Simulation)

24

AGENDA

- Introduction
- Pilot Update (HVM target)
 - » Configuration & Key Component Technologies
 - » System is now in Operation
- Proto Update (>250W)
- Higher Power EUV Source Development
- Summary

Pilot System is now in Operation (1)

Vessel with Magnetic Shield

CO₂ driver laser

Pilot System is now in Operation (2)

Droplet Flow Monitor

Plasma Point Monitor

Pilot System is now in Operation (3)

Pilot System is now in Operation (5)

Pilot#1 has been demonstrating at 100W average power with 5% CE !

» Pilot #1 Data

- » Conversion Eff.
- » Power (in burst)
- » Duty cycle
- » Power (average)
- » Operation Pls Num.
- » Operation Time
- » Dose Stab. (av.)

105W 95% 100W 0.83Bp

5.0%

- 0.83Bpls 5hr
- 0.39%(3σ)
- » OSC + 4xAmplifier (Mitsubishi Electric)
- » CO2 Laser Power » Pulse Rate
- » Pulse Rate » Pulse Duration

9.1kW 50kHz

 ~ 10 ns

GIGAPHOTON

Pilot #1 System is now in Operation (6)

5% CE achieved in Pilot

Due to CO₂ beam profile improvement.

AGENDA

- Introduction
- Pilot Update (HVM target)
 - » Configuration & Key Component Technologies
 - » System is now in Operation
- Proto Update (>250W)
- Higher Power EUV Source Development
- Summary

Prototype LPP Source Systems Update (1)

Prototype high power EUV light source is in operation

<u>Proto #1 POC in Power Scaling &</u> <u>Debris Mitigation</u>

Proto #2 High Power Experiment

Prototype LPP Source Systems Update (2)

Prototype LPP Source Systems Update (3)

News Release

Gigaphoton's EUV Light Source Achieves 250W

Output at 4.0% Luminous Efficiency

Company succeeds in light emission levels capable for use in high-volume manufacturing of state-of-the-art semiconductors

OYAMA, Tochigi July 6, 2016 — Gigaphoton Inc., the leading manufacturer of light sources used in lithography, has announced success in achieving 25 ± 0.0250 , 0 ± 4.00 % iciency with a Laser-Produced Plasma (LPP) light source prototype for EUV scanners, which the company is currently engaged in developing. At this output level, the light sources can be used in high-volume manufacturing of state-of-the-art semiconductors. The company also announced its success in achieving 100 hf continuous operation at EUV130W

This result was achieved via the culmination of a number of efforts that the company has continued to develop, including the sub 20 μ m micro droplet supply technology, the combination of solid state pre-pulse and CO₂ main pulse lasers, improvements in energy control technology, and magnetic field enabled debris mitigation technology.

Prototype LPP Source Systems Update (4)

300W with open loop

256W with closed loop

Prototype LPP Source Systems Update (5)

Proto #2: Power Data (Mar. 3-17, 2016)

Result:

In-band power:158W-132WOperation time:119 hNumber of Pulse:>17.8 BplsDose stability3σ:< 0.19 %</td>

Condition:

Repetition rate:100kHzDuty:40/50% *Average power:79W-52WWith dose control mode* 10 kpls on/0.15 or 0.1s off

Prototype LPP Source Systems Update (6)

Availability

AGENDA

- Introduction
- Pilot Update (HVM target)
 - » Configuration & Key Component Technologies
 - » System is now in Operation
- Proto Update (>250W)
- Higher Power EUV Source Development
- Summary

Higher Power EUV Source Development (1)

• Extendibility to 500W EUV Power EUV Output Power vs. CO₂ Input Power

EUV ave.Power[W]		Conversion Efficiency [%]													
@100kHz		2%	3%	4%	5%	6%	7%	8%							
	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Our possible scale-up sce				
gy [mJ]	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4					
	100		10	46.4	69.6	92.8	116.0	139.2	162.4	185.6					
	150		15	73.7	110.6	147.4	184.3	221.1	258.0	294.8					
	200		20	101.0	1515	202.0	252.5	303.0	353.5	404.0		naria			
	250		25	128.3	192.5	256.6	320.8	384.9	449.1	513.2		e-oh sce	enuno		
	300	Γ×	30	155.6	233.4	31.2	389.0	466.8	544.6	622.4					
	350	er	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6				ZTT.	
	400	No	40	210.2	315.3	420.4	525.5	630.6	735.7	840.8					
ner	450	₽.	45	237.5	356.3	475.0	593 <u>8</u>	712.5	831.3	950.0					
Ē	500	ave	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2		HVM	HVM	HVM	
Isel	550	ŝr e	55	292.1	438.2	584.2	730.3	876.3	1022.4	1168.4		(1st)	(9 nd)	(2rd)	
2 la	600	ase	60	319.4	479.1	638.8	798.5	958.2	1117.9	1277.6			(2)		
ö	<mark>650</mark>	21	65	346.7	520.1	693.4	866.8	1040.1	1213.5	1386.8	FLIV power	250W	500W	1000W	
0	700	8	70	374.0	561.0	748.0	935.0	1122.0	1309.0	1496.0		20011	50011	100011	
	750		75	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Pulsa Rata	100 kHz	100LU-	100kHz	
	800		80	428.6	642.9	857.2	1071.5	1285.8	1500.1	1714.4					
	850		85	455.9	683.9	911.8	1139.8	1367.7	1595.7	1823.6	CE	1 5%	E 0/	6%	
	900		90	483.2	724.8	966.4	1208.0	1449.6	1691.2	1932.8		4.J /0	370	0/6	
	950		95	510.5	765.8	1021.0	12/6.3	1010.4	1/86.8	2042.0		25414/	AOLAN	45L\A/	
	1000		100	537.8	806.7	1075.6	1344.5	1613.4	1882.3	2151.2		ZJKVV	HUKW	OJKVV	
											Power				

Higher Power EUV Source Development (2)

<History of Amplifier development>

High EUV Conversion Efficiency

Cooperation with

41

JIGAPHOTON

AGENDA

- Introduction
- Pilot Update (HVM target)
 - » Configuration & Key Component Technologies
 - » System is now in Operation
- Proto Update (>250W)
- Higher Power EUV Source Development
- Summary

Summary

- Pilot is up running and its to demonstrate HVM capability
 - » EUV power recorded 100W average (105W stabilized, 95% duty) with 5% conversion efficiency for 5hours operation in September 2016.
 - » High conversion efficiency is realized with several key engineering efforts.
 - » CO_2 driver laser power test up to 27kW in process.
 - » Next target is >100W average power with high duty cycle operation with Collector full-scale mirror demonstration.
- Power scaling and availability improvement with Proto system in process
 - » 256W in burst power, closed loop operation with CE=4.0% were demonstrated.
 - » 119 hours 158-132 W power (in burst power, 50% duty) under closed loop was successfully demonstrated.
 - » Proto#2 unit recorded 43% availability during 13 week average (10h x 5 day).
- Further scalability scenario toward 500W EUV source power is under investigation.

Acknowledgements

Thanks for co-operation:

Mitsubishi electric CO₂ laser amp. develop. team: *Dr. Yoichi Tanino*,* Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others.

* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much.

Dr. Akira Endo : HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University

- Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University
- Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

Thanks for funding:

EUV source development funding is partially support by NEDO(New Energy and Industrial Technology Development Organization) in JAPAN

Thanks to my colleagues:

EUV development team of Gigaphoton; Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers.

JIGAPHOTON

THANK YOU for Your Attention

