

EUV lithography industrialization for HVM

Michael Lercel Director, Strategic Marketing

December 2017, Tokyo

Outline

Public Slide 2 December 2017

- NXE Roadmap
- NXE:3400B performance
- Reticle front-side defectivity
- EUV source roadmap
- EUV extendibility

EUV development has progressed over 30 years from NGL to HVM insertion

Slide 3 December 2017

EUV extension roadmap

ASML

Public Slide 5 December 2017

Outline

Public Slide 6 December 2017

- NXE Roadmap
- NXE:3400B performance
- Reticle front-side defectivity
- EUV source roadmap
- EUV extendibility

NXE:3400B: 13 nm resolution at full productivity Supporting 5 nm logic, <15 nm DRAM requirements

ASML

Public Slide 7 December 2017

3400B illuminator: increased pupil flexibility at full throughput

Public Slide 8 December 2017

ASML

Pupil filling improvement from 3300 to 3400 with approximately 20% higher transmission or 10% higher throughput

Evolutionary improvements in EUV optics enabling 7 nm and 5 nm nodes for imaging, focus and overlay

Entire 3xy0 population shows wavefront improvements

Source: Carl Zeiss SMT AG

ASML

Public Slide 9 December 2017

13 nm LS and 16 nm IS: full-wafer CDU **0.3 nm** meets 5 nm logic requirements, with excellent process windows

ASML

Public Slide 10 December 2017

Proximity matching 3400-3350 well within specification Tool-to-tool matching is precondition to HVM

ASML

Public Slide 11

Higher flexibility of 3400 illuminator can be used to mimic all NXE:3350 settings

- <u>Plus</u>, throughput loss on NXE:3350 will be recovered for aggressive illumination modes
- Minor differences in lens optics are not significant factors in matching

1.9 nm Matched overlay NXT:2000i to NXE:3400B Champion data including lens fingerprint correction on NXT

NXT:2000

wafers (4.2)

pellicle

(MMO)

•

•

•

•

•

Setup done with new reference

NXT2000i layer exposed with

NXT (average population) lens

fingerprint correction via Reticle Writing Correction simulated

Overlay measured to reference

NXE at max scan speed (300mm/s)

NXE:3400B

Results per wafer 6 Lot: (1.9,1.9) X (mu) 4.5 % 3 1.8 99.7 2.1 1.9 1.9 1.8 1.5 \cap 2 3 5 6

	OVL (X,Y)
NXT:2000 MMO	1.8,1.6 nm
NXE:3400 MMO	1.2,1.3 nm
NXT to NXE matching	1.9,1.9 nm

ASML

Public Slide 12 December 2017

Multiple machines show < 6 nm focus uniformity

Public Slide 13 December 2017

ASML

Outline

Public Slide 14 December 2017

- NXE Roadmap
- NXE:3400B performance
- Reticle front-side defectivity
- EUV source roadmap
- EUV extendibility

Two-fold approach to eliminate reticle front-side defects

Public Slide 15 December 2017

ASML

1. Clean system (without pellicle)

Reticle

2. EUV pellicle

EUV Reticle (13.5nm)

Reticle with pellicle

1. Clean system Reticle front-side defectivity - Improvement categories

Public Slide 16 December 2017

ASML

Public

Slide 17 December 2017

2. EUV pellicle Today: Pellicle film produced without defects that print

Public Slide 18 December 2017

of defects

Improvement from Q3 2016 to now

2. EUV pellicle ASML pellicle capability confirmed to at least 140W

Public Slide 19 December 2017

22 nm Patterned Defect reticle exposed on NXE:3400B

ASML

Public Slide 20 2017 SW

EUV: Principles of Generation

ASML

Public Slide 22 2017 SW

Tin Laser Produced Plasma Image

- 1. High power laser interacts with liquid tin producing a plasma.
- 2. Plasma is heated to high temperatures creating EUV radiation.
- 3. Radiation is collected and used to pattern wafers.

Plasma simulation capabilities Main-pulse modeling using HYDRA

ASML

Public Slide 23 2017 SW

Simulation of the EUV source

The plasma code's outputs were processed to produce synthetic source data. The comparison to experiments helps to validate the code and understand it's accuracy.

ASML

Public Slide 24 2017 SW

Summary: Path from Technology development with PPIM/MPIM to Industrialized module

EUV Power History

ASML

Public Slide 25 December 2017

Technology Development

SD Proto: Manufactured and stand-alone test in San Diego 250W achieved

250W with 99% die yield measured

Data: Wk1720

EUV Source operation at 250W

with 99.9% fields meeting dose spec

Operation Parameters				
Repetition Rate	50kHz			
MP power on droplet	21.5kW			
Conversion Efficiency	y 6.0%			
Collector Reflectivity	41%			
Dose Margin	10%			
EUV Power	250 W			

ASML

Public Slide 27 2017 SW

NXE productivity above **125** wafers per hour NXE:3400B, 126 WPH at 207W using proto version Seed table Isolation Module

Enhanced isolation leads to >205W EUV power via advanced target formation for high CE

Public Slide 30 2017 SW

Enhanced isolation improves EUV performance

Benefits of enhanced isolation:

- Higher, stable CO_2 laser power \rightarrow lower dose overhead
- High conversion efficiency operation → higher pulse energy

Public Slide 31 2017 SW

ASML

Collector protection secured up to 250 W Collector protection demonstrated on research tool

protection flow versus EUV power into NXE:3400

ASML

Public Slide 32 2017 SW

Outline

Public Slide 34 December 2017

- NXE Roadmap
- NXE:3400B performance
- Reticle front-side defectivity
- EUV source roadmap
- EUV extendibility

High-NA optics design available Larger elements with tighter specifications

Public Slide 35 December 2017

Source: Zeiss, "EUV lithography optics for sub-9 nm resolution," Proc. SPIE 9422, (2015).

Anamorphic High NA EUV reduces the angles Enabling a solution with 26 mm slit on 6" masks

ASML

Public Slide 36 December 2017

Reticle

Reticle layout compatible with

today 6" mask production

Anamorphic High NA EUV reduces the angles Enabling a solution with 26 mm slit on 6" masks

Public Slide 37 December 2017

Source: Jan van Schoot, ASML, "EUV roadmap extension by higher NA", 2016 international symposium on EUV, 24 Oct 2016, Hiroshima

Anamorphic High NA EUV reduces the angles Enabling a solution with 26 mm slit on 6" masks

Public Slide 38 December 2017

Reticle

Reticle layout compatible with

Source: Jan van Schoot, ASML, "EUV roadmap extension by higher NA", 2016 international symposium on EUV, 24 Oct 2016, Hiroshima

Anamorphic magnification solves the problem at the mask Multilayer Reflectivity 70% 60%

New CAR Resists: towards 16nm resolution at full throughput

21 mJ/cm² achieved with good performance; Z-factor improved by 25%

Public Slide 40 December 2017>

	Reference	CAR1	CAR2	CAR3
SEM image @BE/BF				
Dose2Size [mJ/cm²]	42.2	26.3	20.9	20.1
LWR [nm]	4.3	4.8	5.5	5.5
EL _{LQD} [%]	16.5	14.3	14.1	9.1
DOF [nm]	140	115	90	50
Z-factor [mJ/cm ² * nm ³]	1.6E-08	1.2E-08	1.3E-08	1.3E-08

* Exposures performed on NXE:3xy0 with Dip90Y illumination

Conclusion

- Significant progress has been made in all key areas towards insertion in HVM
- >125 WPH demonstrated on NXE:3400B
- EUV lithographic performance results confirmed:
 - Imaging CDU 0.4 nm
 - NXT to NXE overlay matching 1.9 nm
- Roadmap exists to continue to scale productivity

December 2017

