

1

Accelerator Technology

Superconducting RF Cavity

Dec. 12, 2017 The 2nd EUV-FEL Workshop

KEK, High Energy Accelerator Research Organization

Takaaki. Furuya

Accelerator Technology Superconducting RF Cavity

- Surface resistance of NC & SC
- Application of SC-RF
- Linear Acceleartors
- Summary

Surface resistance of NC & SC

Superconducting technology in accelerator

SC magnet

strong DC magnetic field kicking beams bending, focusing, undulator

SC RF cavity

electro-magnetic field for beam acceleration energy transfer to the beam accelerating, deflection, RF separator

Performance of RF Cavity

Shunt impedance :R₀ accelerating voltage: Vc cavity wall loss: Pc ohmic loss of surface current

$$R_0 = \frac{V_c^2}{P_c} = \frac{V_c^2}{\frac{1}{2} \int_s R_s H^2 ds}$$

R_s: has the material information surface resistance (ohm)

Surface resistance of NC & SC

Normal conducting cavity

$$R_s = \frac{1}{\delta\sigma} = \sqrt{\frac{\omega\mu}{2\sigma}}$$

(δ : skin depth, σ : conductivity)

R_s depends on both frequency and cavity material.

For Cu cavity of 1.3 GHz

 σ =0.58×10⁸ mho/m R_s=9 mΩ

huge wall loss of 8 MW/m at 20 MV/m 32 MW/m at 40 MV/m →pulse operation with high gradient →continuous wave with low gradient

$$R_{0} = \frac{V_{c}^{2}}{P_{c}} = \frac{V_{c}^{2}}{\frac{1}{2} \int_{s}^{s} R_{s} H^{2} ds}$$

Superconducting cavity

$$R_{s} = R_{BCS} + R_{res} ,$$
residual resistance
theoretical
$$w^{2} = \left(-\Delta(0), T \right)$$

$$R_{BCS} = A \frac{\omega^2}{T} \exp\left(-\frac{\Delta(0)}{k_B T_c} \cdot \frac{T_c}{T}\right)$$

For Nb cavity of 1.3 GHz 4×10^{-7} ohm at 4.2K, 6×10^{-9} ohm at 1.8K.

negligible small wall loss of 1.3W/m at 10MV/m, 5.4W/m at 20MV/m.

SC-RF provides CW operation at high gradient, but needs extremely clean work.

Surface resistance

Field limitation of SC-RF

- Critical magnetic field of Superconductivity When magnetic field in the cavity exceeds Hc.
 In typical Nb cavity, Hc1 of 0.2 T corresponds to 50 MV/m.
- 2. Local heating and quench due to the surface defect
 - 1) inpurity
 - 2) trapped flux of residual magnetic field
 - 3) Multipacting discharge
 - 4) field emission
 - 5) Q-disease
- 3. Cryogenic capacity

Cavity loss is proportional with (gradient)².

Loss of 1 W at 2 K needs primary electric power of ~3 kW.

History of SC-RF application

1965 HEPL the first beam

Linear accelerator

1988 **KEK-TRISTAN**

Fig. 4: Integration of a 350 MHz super-LEP cavity into the cryostat

CERN LEP 1991

Light source

Circular accelerator

KEKB(1998)

LHC(2009)

ANL ion acc.(1978)

CEBAF(1992)

ILC · ERL · LCLS-II **EURO-XFEL**

SNS

SR rings using SC-RF

	TLS	CLS	Diamon d	SSRF	BEPC-	SOLEIL	NSLS-	TPS	PLS-11
Energy (GeV)	1.5	2.5	3.0	3.5	2.5	2.75	3.0	3.0	3.0
Current (mA)	350	250	300	200	250	500	300	400	400
frequency (MHz)	500	500	500	500	500	352	500	500	500
Cavity type	CESR	CESR	CESR	CESR	KEKB	SOLEIL	CESR	KEKB	CESR
Number of cavity	1	1	2	3	2	4	2	3	3
Voltage (MV/cav)	1.6	2.4	2.0	2.0	1.5	1.5	1.7	1.6	1.5

SC-RF provides a stable operation of 5 ~ 10 MV/m. Minimize the RF space so as to increase the number of insertion.

SC-RF of SuperKEKB

- Challenge to a 2.6 A beam.
 Commissioning of SuperKEKB starts in 2018.
- performance recovery by horizontal high-pressure rinsing.
 Degraded gradient and Q0 were recovered.

SuperKEKB-SCC Design Parameters						
Number of Cavities	8					
Max. Beam Current [A]	2.6					
RF Voltage [MV/cav.]	1.5					
External Q	5E+4					
Unloaded Q at 2MV	1E+9					
Beam Loading [kW/cav.]	400					
HOM Loading [kW/cav.]	37					

SC-RF Linear Accelerators

CEBAF (1992 -)

CW electron linac for nuclear physics Five turns of the SC-RF of 80m × 2 provides 12 GeV electrons. 1.5 GHz 0.5m × 418 cavities generates 2.2 GV Accelerating gradient of 5 - 18 MV/m

KEK-cERL (2013 -)

CW electron linac for ERL feasibility study. 35 MeV ERL with 5.5MeV injection. RF system •500 kV photocathode gun

injector linac: 1.3 GHz 2-cell × 3
main linac: 1.3 GHz 9-cell × 2
Stable operation at 20 MeV.
Demonstrate the basic functions of energy recovering normalized emittance of 0.14mm mrad. stable operation at 8.2 MV/m

• Since the strong field emission electron in the cavity increased the cryogenic load, accelerating gradient had to be reduced.

• The source of FE is the dust particle during the final assembly process and also by the dust particle penetrate into the cavity during operation.

• Still need the establishment of a clean assembling process.

It seems that manufacturing method of the cavity itself has been established.

LCLS-II (2020? -)

CW linac of 4 GeV, with an average current of 62 μ A. 1.3 GHz, 9-cell × 280, 16 MV/m with Q0 of 2.7E+10. Manufacturing and installation of the cavity modules will finish in 2019.

- low-loss cavity surface treated by N-dope technology.
- •following the mass production technology of Euro-XFEL.
- •under the collaboration with FNAL & JLAB.
- •Cryoplant of 18 kW @4.5K. (4 kW @2K)

AVG gradient of 144 cavities achieved 22.6 MV/m. (Q0 of 3×10^{10}) Completed 6 modules have an average gradient of 19 MV/m (Q0 of 2.5×10^{10})

Euro-FEL (2016 -)

17.5 GeV electron linac.
pulse of 1.4 ms with a rep rate of 10 Hz
1.3 GHz, 9-cell × 768,
24 MV/m with Q of 1E+10

All cavities were completed and installed.
Machine commissioning is in progress.
Produces X-ray up to 24.8 keV.
Produces bright and very short light pulses up to 27000 pps.

Construction in 2008 - 2015 gives a lot of information about mass production.

- The most important characteristic of SC-RF is that it can provide high field gradient in CW mode or a very high duty factor.
- In circular machine, HOM damped SC-RF accelerates a ampere class beam. The SC-RF of SuperKEKB will challenge a 2.6 A beam.
- In SC-RF linac, it is a very exciting time now.
 Large scale SC-RF linacs are
 CEBAF is accumulating the operation data of high gradient cavities.
 Euro-XFEL has just started commissioning.
 LCLS-II will complete in 2019, and will commission in 2020.
- Manufacturing process of SC-RF of 20 MV/m has been established. The next problem is maintenance and performance recovering. Especially, measures against FE is an urgent issue.

Thank you for your attention.