

Perspective of Accelerator Technology in Toshiba

Dec.12,2017

Yutaka Hirata Toshiba Energy Systems & Solutions Corporation Nuclear Energy Systems & Services Division

© Toshiba Energy Systems & Solutions Corporation 2017

Contents

Toshiba Overview

- Toshiba Experiences of Accelerator
- Key Feature of Toshiba Accelerator Technology
- Conclusion

Contents

Toshiba Overview

- Toshiba Experiences of Accelerator
- Key Feature of Toshiba Accelerator
 Technology
- Conclusion

Toshiba New Business Structure

Introduction

Toshiba New Business Structure

Company Outline

707
\bigcirc

Company Name	Toshiba Energy Systems & Solutions Corporation	
Headquaters	Address : 72-34, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa	
Date of Succession	October 1, 2017 (Split off from Toshiba Corporation)	
President and CEO	Yoshihiro Aburatani	
Common Stock	¥10 billion	
Business Outline	Development, manufacture and sales of energy business products, systems and services	
Net Sales	¥974.9 billion (Consolidated net sales of Toshiba group, energy business, FY2016)	
Number of Employees	Approx. 7,200 (as of 1st Oct, 2017)	

Organization

Contents

Toshiba Overview

Toshiba Experiences of Accelerator

- Key Feature of Toshiba Accelerator
 Technology
- Conclusion

TOSHIBA Experiences of Accelerator

Accelerator System

• 1950~1960

Cyclotron (Tokyo University, RIKEN)

• 1980~1990

RFQ for heavy Ion accelerator, Ferrite Loaded RF Cavity,

Vacuum duct (Tokyo University)

Electron Acceleration & Storage Ring for Semiconductor Lithography (NTT)

- Circumference : 53m
- Energy: 13Mev~800MeV
- Stored Current : 120mA

Electron Synchrotron for Semiconductor Lithography (SORTEC)

- Circumference : 43m
- Energy: 40MeV~1GeV
- Beam Current : 70mA
- Donated to Kingdom of Thailand since 1996.

ab

aß

Accelerator System

Super Photon ring-8 GeV (SPring-8)

Synchrotron System

SPring-8 Booster Synchrotron

Main Parameter: • Injection Energy 1GeV • Maximum Energy 8GeV • Circumference 396.12m

Cavity: •5-cell Cavity × 8 •250kW/cavity Klystron: •E3732 ×2 •Frequency 508.58 MHz •Max. Output 1 MW(CW)

Storage Ring RF System

SPring-8 RF System for Storage Ring

Cavity:

- Single Cell × 8×4stations
- Input Power 150kW
 Klystron:
- E3732
- Frequency 508.58 MHz
- Max. Output 1 MW(CW)

Storage Ring RF System

Australian Synchrotron RF System

RF Power Supply & Klystron

RF Cavity

Customer : Major Project Victoria Operation since 2006

Main Parameter

- Frequency 499.654MHz
- Max. Voltage 750kV/cavity
- HOM Damped Cavity
- Klystron E3774U (Efficiency >60%)

Synchrotron Radiation Facility

Aichi Synchrotron Radiation Center

Stora

Operation since 2012

(C)Aichi Synchrotron Radiation Center

SI C	Injector Linac		
1	 Electron energy 	50MeV	
1 1 1000 - TR	· RF frequency	2856MHz	
	Booster Synchrotron		
ALC: NO	 Electron energy 	1.2GeV	
Self-Talm 13	· Circumference	49.2m	
	• Repetition rate	1Hz	
AND REAL PROPERTY	Storage Ring		
KARO H	 Electron energy 	1.2GeV	
	· Circumference	72m	
	· Current	300mA	
ge Ring RF Cavity	 Emittance 	50nmrad	

Injector Linac

Superconducting

Bending Magnet

Heavy Ion Synchrotron

Contribution to Building HIMAC Synchrotron

Heavy Ion Cancer Therapy System

Contribution to Building New Treatment Facility

Superconducting Magnet System

Superconducting Rotating Gantry for NIRS

35 aß 0

This isocentric rotating gantry can transport carbon ions with the maximum energy of 430MeV/u to an isocenter with irradiation angles of over +/-180 degrees.

Heavy Ion Cancer Therapy System

Kanagawa Cancer Center i-ROCK

"i-ROCK" is TOSHIBA's 1st machine to the market based on NIRS technologies.
 The treatment stared since 2015.

Heavy Ion Cancer Therapy System

Yamagata University Hospital

Superconducting Magnet

ATLAS Central Solenoid Magnet for LHC

CERN/KEK LHC operation since 2003

Main Parameter :

- Coil Inner Radius 1229mm
- Coil Length

5300mm Conductor 30mm × 4.3mm

NbTi/Cu/Al

Coil Parameter :

- Operation Current 7600A
- Stored Energy
- **39MJ**
- Central Magnetic Field **2**T

Superconducting Magnet

Superconducting Quadrupole Magnet for LHC (MQX-A)

8.3ton

CERN/KEK LHC

Main Parameter :

- Magnet Length 6.3m
- Coil Inner Radius 35mm
- Magnet Outer Radius 245mm
- Weight

Coil Parameter :

- Nominal Current 8057A
- Stored Energy
- Peak Field(Nominal) 9.6T
- Cooling

1.8K LHe

2.8MJ

Superconducting Magnet

Superconducting Triplet Q Magnet for RIKEN BigRIPS

Superconducting Magnet System

Liquid-helium Cryogenic Plant for RIKEN BigRIPS

Contents

Toshiba Overview

- Toshiba Experiences of Accelerator
- Key Feature of Toshiba Accelerator
 Technology

Conclusion

TOSHIBA'S Accelerator Technologies

Accelerator Physics Design & Analysis

System Integration Engineering

Superconducting Magnet Manufacturing Techniques

Special Manufacturing Techniques

Installation/Testing Supervising

Accelerator Physics Design & Analysis

Lattice Design

Toshiba's design capability includes not only manufacturing/testing but basic accelerator planning design such as lattice design and beam physics.

RF/ Mechanical/ Thermal Analysis

- Toshiba's capability includes special analysis technology:
 - 2D/3D Electromagnetic Analysis, Thermal and Deformation Analysis

(0)

35

System Integration Engineering

Superconducting Magnet Manufacturing Techniques

Various Superconducting Magnet manufacturing techniques

- Precise winding: Long length & Precise coil.
- Surface winding: Free shape winding

٥Ľ

Special Techniques

Precise Machining and Bonding for RF Cavity

• Realize maximization of Q value, minimization of deformation and no water leakage.

Precise Alignment

• Rich experiences of precise alignment for accelerator facilities using Laser Tracker and other optical measuring instruments.

J

Contents

Toshiba Overview

- Toshiba Experiences of Accelerator
- Key Feature of Toshiba Accelerator
 Technology
- Conclusion

For Realizing EUV-EFL

R&D Item:

- System integration design:
- Photo cathode Electron gun:
- Cryostat module
- Vacuum vessel
- Superconducting Cavity
- HOM damper: Insertion Device Magnets, Power supply et.al.
 EUV optical system :
- Exposure system :

Accelerator Technology + Superconducting Technology Is the Key to the Future

For Realizing EUV-EFL - R&D Activities of Toshiba -

Superconducting Cavity Prototype

ILC specification has been accomplished:

Eacc,max = 35MV/m @Q0 = 8 × 10^9

HOM Damper Prototype

Completed manufacturing Prototype.

Photo cathode Electron gun

Completed basic design.

Superconducting Cavity

HOM Damper

R&D process is steadily heading towards success

Conclusion

- Toshiba provides the most highly advanced, reliable and stable Accelerator Components and System applying Superconducting Technology, based on our successful experiences.
- Toshiba can
 - contribute from planning stage based on our Accelerator and system engineering capability with Superconducting Technology.
 - provide excellent accelerator components based on our vast design and manufacturing experiences.

We believe that we can contribute to the progress of future industry & science

TOSHIBA Leading Innovation >>>

