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First, I’ll explain why I began studying X-ray reduction lithography.
| was involved in research on X-ray proximity lithography (XPL)
around 1983.

At that time, the target resolution for XPL was 0.5 um,

which was thought to be difficult to achieve with ultraviolet
lithography.

We had already developed apparatus for S&R type proximity
X-ray lithography and examined its applicability to the trial
production of devices. We were deeply involved in these trials
and in improving evaluation procedures.

Our assessment was that the exposure machine and resist
performance seemed quite adequate; but we ran into too many
problems with the manufacture of proximity masks.

It was around that time that | began to seriously consider

X ray reduction lithography as a more viable alternative.
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The response to the announcement was

rather negative.

People seemed unwilling to believe that

we had actually made an image by bending X-rays,
and they tended to regard the whole thing

as a big fish story.

However, my belief remained unshaken that
"theoretically, 1t Is possible to produce an image
using a reduction optical system consisting of a
couple of mirrors coated with multilayer film."



So'ft x-ray reduction lithography using multilayer mirrors

H. Kinoshita, K. Kurihara,® Y. Ishii,and Y. Torii
NTT LSI Laboratories, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan

(Received 30 May 1989; accepted 11 July 1989)

A soft x-ray lithograpy using multilayer mirrors for demagnifying optics and a reﬂectmg mask
has been designed and studied experimentally. In this system, a wavelength of 45-130 A has been
selected based on the optical characteristics, the exposed depth of the resist film, and the
reflectivity of the multilayer mirror. To obtain a replication pattern resolution of 0.2 um, the
numerical aperture required is estimated to be greater than 0.0125 or 0.0325 for a wavelength of
50 or 130 A, respectively. These values show that the multilayer optics using two mirrors can be
realized to replicate a 0.2 um pattern. The experiments were performed on the SR beamline BL-1

- of the KEK-PF storage ring. The Schwarzschild demagnifying optics with a ring field were
designed and fabricated. Demagnified exposure patterns of less than 0.5 zm have been obtained
using a reflecting mask. The feasibility of the soft x-ray reduction method using multilayer
mirrors has been confirmed. Furthermore, new telecentric optics are proposed to realize a
practical reduction lithography system.

J. Vac. Sci. Technol.B7(6) (1989) 1648



Selection of exposure wavelength
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FIG. 1. The optical characteristics dependence on x-ray wavelength.



High reflectivity close to theoretical value was achieved in 1985.
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Reflectivity
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Reflectivity Measurement in the world
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Resist Characteristics
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Sensitivity Curve-PMM‘A' Sensitivity Curve-SAL601
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Pattern Profiles of Chemically

Resist SenSitivity Characteristics Amplified Resist SAL601
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NTT
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NTT Telecentric optics design
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JVST Nov/Dec 1989, H. Kinoshita etal



| encountered questions attack from AT&T in Banquet of EIPB’89.



-arly stage of development

NTT G 1986~
Proximity Soft X-ray Lithography to EUVL

LLNL G 1988 ~
Application of X-ray optics

AT&T G 1988~
Application of X-ray laser and shortening the wavelength



“Soft X-ray projection lithography”

Seccndary imaging lens

Fi6. 1. X-ray reduction camera with corrected field curvature and uniform
illumination. The x-ray master pattcrn (mask) is on a thick, curved sub-
strate.

Leser produced plasma

A=44.8A FIG. 3. X-ray reduction camera system configuration with a laser produced
plasma source.
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FiG. 2. Theoretical normal incidence performance of a 200 layer pair, car-
bon-chromium multilayer mirror with a d spacing of 2.25 nm, N =200,
y=0.35.

JVST Nov/Dec 1988, A. Hawryluk and L. Seppala



LLNL
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FIG. 1. Hlustration of one possible x-ray reduction camera design: off axis
scanning system with reflecting mask. In this embodiment, the mask is
imaged and scanned onto the wafer (a “‘step and scan” sequence). An ex-
ample of a ““step and repeat” x-ray reduction camera is shown in Ref. 1.
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FiG. 2. Cross-sectional view of an XRPL mask. A thin gold absorber pattern
with relatively large linewidths is patterned directly onto a soft x-ray muiti-
layer mirror.
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F1G. 4. Schematic representa-
tion of a 5X reduction, ring
field scanning system employ-
ing four imaging mirrors, a re-
flective mask, two condenser
mirrors, and driven by a laser
produced “point” source of x
rays.

JVST Nov/Dec 1989, A. Hawrlyluk and N. Ceglio etal.
JVST Nov/Dec 1990, N. Ceglio etal.



AT&T
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WAFER
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MIRROR
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MIRROR

\—APERTURE 5

-<—— TRANSMISSION
MASK

<—— INCIDENT
SYNCHROTRON
RADIATION
A=36nm

Fig.1. Schematic diagram showing the basic experimental
arrangement. The two mirrors that composc the Schwarzs-
child objective were mounted in a single housing.
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- Fig. 2. Calculated MTF curves for the Schwarzschild ob-
jective with spatially incoherent illumination for two differ-
ent situations: on-axis illumination with light at 157 nm
and with the full N.A. (0.4), and off-axis illumination at 36
am with N.A. = 0.113.

vWaveIength 36nm, Ir coated mirror

(@

(b)

Fig.3. Scanning electron micrographs of developed images
in a 60-nm-thick film of PMMA on silicon: (a) the lines and
spaces shown have widths of 1, 0.5, 0.375, 0.25, and 0.2 um;
(b) closeup of the 0.2-um lines and spaces.

Optics letters May 15, 1990
D. Berreman and J. Bjorkholm etal.
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Wavelength 42 nm, Ir coated mirror
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AT&T Reduction image at 14 nm using SC optics
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FIG. 1. Schematic diagram of the basic experimental setup. The two min"or:s
comprising the Schwarzschild objective were coated with Mo/Si multi-
layers to provide a reflectance of ~40% at 14 nm.
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JVST Nov/Dec 1990, J.Bjorkholm, J. Boker, R. Freeman etal.



Although AT&T G specialized in lasers and optical devices,
they were also thinking about how to apply laser technology
to lithography.

Their main goal was to obtain actual proof of the
diffraction-limited performance.

To achieve it, they employed a reflective system
consisting of on-axis SC optics without distortion.

That was different from NTT G initial goal of obtaining
a large exposure field.

Nevertheless, the evidence they obtained regarding
the diffraction-limited performance paved the way
to the development of reduction lithography.



From 1989, NTT has developed a two-aspherical mirror system.
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NTT

TABLE I. Design goals and conditions.

Storage ring
: "Resolution 0.1 gm
Reflection mask Focusing ITOrs Field size 15 15 mm? ( > 10-mm radius ring scan)
Distortion <0.01 gm
Depth of focus + 1pum
Number of mirrors 2
Wavelength 130A
Numerical aperture 0.07
Aberration <0.05 um
'mage plane Telecentricity <0.6° at + 1-um defocus
>Z Magnification 1/5 (mask size: 75X 15 mm?)

Ring shaped beam ' Front focal plane

70
Mo/Si

60 [  467.1R
N=30

50 [ e=15°
S-polarization

40 o

Reflectivity (%)
w
o

3

100 110 120 130 140A150 160 . 0.25xm _
% & (a) (b)

OSA Proceedings on SXPL, 1991, Vol.12 H.Kinoshita
JVST B9(6) (1991) K.Kurihara and H.Kinoshita



(a) Mask Patterns (b) Replicated Patterns

SPIE Vol. 1742 (1992) 583 H. Kinoshita



1992

Experimental setup of a two aspherical mirrors system
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on EUV Lithography
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Hiroo Kinoshita
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First EUVL Meeting was held in 1993.



US-Japan Workshop on Soft X-ray optics in Mt. Fuji 1996




Fabrication of Aspherical Mirror tinsley

Figure Improvement Timeline
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rms nanometers
pe—"y

1988 1990 1992 1994 1996 1998 2000
Year

Fabrication is possible if testing is possible.
2nd U.S.~Japan Workshop on Soft X-Ray Optics Figure 11

1996



Aspheric Fabrication Process

Four Core Technology By Tinsley Labo.
[ '] —1  Surfacing @E ;
U L |
Precision Machining Computer Controlied Mr. D. Bajuk

Optical Surfacing

Metrology

Profilometry Phase Measuring interferometry



Aspherical Mirror Measurement using CGH
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Modulation
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Figure Error(nm)
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Collimated beam : _
M2: Convex toroidal mirror

Super-ALIS

Mask stage : Energy: 600 MeV
Reflection mask 40 mrad(h), 4 mrad(v)
M4: Toroidal mirror Beam size: $2.4 mm(3c)
/
M1: Concave
toroidal mirror
Ring-field
illumination

(radius: 62.5 mm)

Two-aspherical mirror LY ' Entrance pupil
system

NA: 0.1, Magnification: 1/5x = M3: Rotating ‘/‘
Ring-field:100 mm x 0.2 mm Wafer stage cylindrical mirror




Mask stage

Convex mirror &
Wafer stage

Focusing optics &
Concave mirror




M3 mirror and rotating mechanism




with rotating M3 and
scanning mask stage

with rotating M3
without rotating M3
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Multilayer Fabrication in NTT

» Development of artificial lattice film of metal thin film was promoted
as a superconductor at first.

* Dr. Takel etc of Ibaraki ETL developed a W/Cmultilayer film from the

early 1980°s and the first X-ray reduction experiment was done from
1984.

 In 1985 T. Barbee et al. fabricated a Mo/Si multilayer with a
wavelength of 17 nm for astronomical observation and reported values
exceeding the theoretical value.

« Since then, we advanced the development of Mo/Si multilayer at
Musashino ETL.



Initially, even 45% reflectivity could not fabricated.

100 , l ! t ] ‘
Mo/Si i
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Fig.9. The x-ray reflectivities of the Mo/Si
multilayer.
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In ML fabrication on SC Optics, stress control was difficult and
cracks were observed.




Configuration of Magnetron sputter equipment

Special shape

shield plate

Shield plate

L]

Rotation Speed Control
-

=

Substrate Holder

wlbstrate
] uhU tter

1

*_ﬂ

B —

—

=

Hz

Ar

\‘ Target 2 J

e

|- l\/Iagnet
Target 1

High Speed Shutter

|

Mass flow controller

B 2-1-1.if v x b ARy &2 7

| rF

Source

|

T DO

r—-.u—'

——[){}—— Exhaust

pump



Detector

Plane Concave
SR Beam| | |rror Mirror

I Goniometer

“Plane
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Grating

Vacuum Chamber
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A reflectometer was installed in BL-1B of KEK.
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At first, a laser plasma light source of metal target was developed.

X-Ray Pinhole  Laser Diagnostics Excimer Laser:
gty Camera KrF - 248 nm,
1.5 Jpulse @ 100 Hz

Amplifier 2 Amplifier 1 Oscillator

N -
7). Ditiraction Figure 4
% Gratings .
Experimental Arrangement
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Figure 3.5 Relative CE into 13.5-nm radiation as a function of the atomic number of the
emitter. The highly efficient Sn (Z = 50) and the frequently used Xe (Z = 54) are marked.
(Reprinted from Ref. 14.)
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Figure 1. Relative target volume ejected by
a 0.8 J, 248 nm laser pulse versus the energy
density required to melt the target from a solid at
20°C, plotted for selected target materials.



Figure 2. Scanning electron micrographs of a Mo/Si multilayer-coated optic a) after exposure to
630,000 pulses of a laser plasma produced on a solid Au target in the presence of 200 mTorr of He gas, and b)
after chemical removal of the Au particulates from the same multilayer coating,
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Gigaphoton’s LPP Light Source Concept
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Transition of plasma source development
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Since the luminous efficiency of Xe is 1% or less,
Mo / Be at 11 nm which is a more suitable
wavelength has been proposed.
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Pre-pulse method

First, by using YAG laser with a wavelength of 1 um, Droplet was
crushed into fine mist form and further irradiated with CO,, laser,
It was possible to completely evaporate Sn.

3
— 2.5
[
l:El L
“g“ 2
m &
=
™~ 1.5
2 $
w L 4
@ 1 *
£ L
L
¢y 05
.D drerersererberierdcbebis dreereek
0.001 0.01 0.1 1 10 100

YAG-CO2 delay [usec]

The efficiency of ionization was improved

by controlling the delay time of the pre-pulse,
and as the small Droplet, the high temperature
plasma was obtained.

As a result, the conversion efficiency could be
improved to 3.3%.
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By increasing the pulse width of the

pre-pulse laser from 10 ns to10 ps, it

Improved from 3.3% to 4.7%.
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Source power of >250W was demonstrated, shipping started in the end of 2017.
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A High-NA projection optics design available ﬁ ASML

Larger elements with tighter specifications Public
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2018 EUVL Workshop

S — Extreme aspheres enabling
further improved wavefront / imaging performance
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higher optics Transmission
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High NA optics design supports
significant reduction in wavefront RMS
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N ML Reflection: V- and S-option have lower angles than 0.33NA ASML

The square option has the lowest maximum angle Public
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" High-NA Field and Mask Size productivity ASML

Public

500W enables throughput of 150wph with anamorphic HF Side 11

29 September 2015

Throughput for various source powers and doses
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High-NA system architecture available ASML

Public
Slide 45

Improved metrology Mask Stage Lens & illuminator WOAmE

2~3x improvement in overlay/focus 4x increase in acceleration *  NA 0.55 for sub-10nm resolution
. High transmission
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New Frames Source

Improved thermal and dynamic Wafer Stagg : Compatible with 0.33 NA sources, power
2x increase in acceleration

control with larger optics improvements opportunities over time
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Snapshot of Advanced Process Roadmap
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Summary

Research and development on EUVL over 30 years has led to
significant breakthrough in processing and measurement technology.

We can now look back at the history with a wonderful feeling of
accomplishment.

Although several critical problems still remain with regard to such

things as light source, mask inspection and resist, it appears now that solution
can be found, since the fabrication of aspherical mirrors and multilayer,
which were the biggest headaches, were achieved.

As long as we do not lose the desire that has sprung from with us,
technology will steadily advanced from the nano to the pico.



