## Present Status and Future Prospects of EUV Lithography

#### (EUV リソグラフィーの現状と将来展望)

December 11, 2011

Evolving nano process Infrastructure Development Center, Inc. (EIDEC) Hidemi Ishiuchi



#### Outline

- Scaling Trend: End of Moore's Law?
- Present Status of EUV Lithography
- Challenges in EUV Lithography
- Mass Production with EUV Lithography
- Summary



# **IRDS Lithography Roadmap**

|                                                                | 0047 | 0040 | 0004 | 0004 |       | 0000  | 0000  | No cooling peeded                              |
|----------------------------------------------------------------|------|------|------|------|-------|-------|-------|------------------------------------------------|
| YEAR OF PRODUCTION                                             | 2017 | 2019 | 2021 | 2024 | 2027  | 2030  | 2033  | No scaling needed                              |
| DRAM                                                           |      |      |      |      |       |       |       | after2027 or 2030 ?                            |
| DRAM minimum ½ pitch (nm)                                      | 18   | 17.5 | 17.0 | 14.0 | 11.0  | 8.4   | 7.7   |                                                |
| Flash                                                          |      |      |      |      |       |       |       | DRAM still shrinking                           |
| T IUSH                                                         |      |      |      |      |       |       |       |                                                |
| 2D Flash ½ pitch (nm) (un-contacted poly)                      | 15   | 15   | 15   | 15   | 15    | 15    | 15    | Flash is no longer a                           |
| 3D NAND minimum array 1/2 pitch (nm)                           | 80   | 80   | 80   | <80  | <80   | <80   | <80   | driver for high                                |
| MPU / Logic                                                    |      |      |      |      |       |       |       | resolution patterning                          |
| Logic industry "Node Range" Labeling (nm)                      | "10" | "7"  | "5"  | "3"  | "2.1" | "1.5" | "1.0" |                                                |
| MPU/ASIC Minimum Metal ½ pitch (nm)                            | 18.0 | 14.0 | 12.0 | 10.5 | 7.0   | 7.0   | 7.0   | Logic is driving                               |
| Physical Gate Length for HP Logic (nm)                         | 20   | 18   | 16   | 14   | 12    | 12    | 12    | patterning                                     |
| Lateral Gate All Around (LGAA) 1/2 pitch                       |      |      | 12.0 | 10.5 | 9.0   |       |       |                                                |
| Vertical Gate All Around (VGAA) half pitch (nm)                |      |      |      |      |       | 7.0   | 7.0   |                                                |
| Vertical GAA Diameter (nm)                                     |      |      |      |      |       | 6.0   | 6.0   | Small holes for VGAA                           |
| Chip size (mm <sup>2</sup> )                                   |      |      |      |      |       |       |       |                                                |
| Maximum exposure field height (mm)                             | 26   | 26   | 26   | 26   | 26    | 26    | 26    | High-NA(0.55) EUV                              |
| Maximum exposure field length, i.e. scanning direction (mm)    | 33   | 33   | 33   | 16.5 | 16.5  | 16.5  | 16.5  | exposure tool with a                           |
| Maximum field area printed by exposure tool (mm <sup>2</sup> ) | 858  | 858  | 858  | 429  | 429   | 429   | 429   | $858 \text{ mm}^2 \rightarrow 429 \text{mm}^2$ |
|                                                                |      |      |      |      |       |       |       |                                                |

Source: "IRDS 2017 Edition, Lithography," Table LITH-1 (2018)

| Manufacturable solutions exist, and are being optimized |
|---------------------------------------------------------|
| Manufacturable solutions are known                      |
| Interim solutions are known                             |
| Manufacturable solutions are NOT known                  |



#### **3D Cell Arrays of NAND Flash Memories**





ISSCC2014, Three-Dimensional 128Gb MLC Vertical NAND Flash-Memory with 24-WL Stacked Layers and 50MB/s High-Speed Programming, Ki-Tae Parl et al.

Work in Progress - Do not publish

Charge Trap Cell (Samsung)





## Floating Gate Cell (intel / Micron)



(b)

IEDM2015, A Floating Gate Based 3D NAND Technology with CMOS under Array (Invited), Krishna Parat et al

STRJ WS: March 4, 2016, WG6



# Contact hole pattern in DRAM

"EUV single exposure process can be applied below D1z node or beyond."



90 holes / image

15 images /dose 90 holes / image

Fig. 5 SEM top view images and CD measurement results at the conditions indicated by arrows in Fig. 4. Outer 2 lanes of holes are excluded in CD measurement in order to avoid proximity effect of the boundary.

Source: Mijuing Lim et al., "EUV contact-hole local CD uniformity optimization for DRAM storage node application," SPIE Advanced Lithography, 2018; Proc. SPIE 10583, Extreme Ultraviolet (EUV) Lithography IX, 105830X (1 May 2018); doi: 10.1117/12.2299322



120 holes / image



Work in Progress - Do not publish

STRJ WS: March 4, 2016, WG6

### Multiple Patterning with ArF immersion tools



Figure LITH2 Process Flows for Pitch Splitting (DE, DP), and Spacer Patterning

Source: ITRS 2013 Edition, Lithography, Figure LITH2





LE3=Litho+Etch+Litho+Etch+Litho+Etch

Source:http://staticwww.asml.com/doclib/investor/investor\_day/asml\_20161031\_04\_I nvestor\_Day\_2016\_EUV\_and\_its\_Business\_Opportunity\_HMeiling.pdf



### ASML NXE:3400 System



Source: ASML Homepage, Image Library, https://www.asml.com/press/image-library/en/s44169



## **EUV Source Power**

#### **EUV Source & Throughput**

Proven Power<sup>1</sup> & Wafers/Hour<sup>2</sup>

#### Cumulative EUV wafer exposures

NXE:3xxx, Wafers



Source: Roderik van Es et al., "EUV for HVM: towards and industrialized scanner for HVM NXE3400B performance update," SPIE Advanced Lithography, 2018



# High-NA projection optics



Source: J. van School et al., "High-NA EUV Lithography enabling Moore's law in the next decade," SPIE Photomask Technology + EUV Lithography, 2017



# High-NA Surface Metrology



Source: J. van School et al., "High-NA EUV Lithography enabling Moore's law in the next decade," SPIE Photomask Technology + EUV Lithography, 2017



# "7 nm Technologies" in IEDM 2016

- IBM, GLOBALFOUNDRIES, and Samsung:
  - Poly Si (contacted): 44nm / 48 nm pitch (ArF-i)
  - Metal interconnect: 36nm pitch (EUV)
  - EUV lithography for Metal Interconnect
- TSMC:
  - SRAM cell size: 0.027 um<sup>2</sup>
  - Poly Si (contacted): ?? nm pitch
  - Metal interconnect: ?? nm pitch
  - ArF immersion (ArF-i) lithography

(R&D with EUV Lithography, too)

Ref: IEDM Technical Digest, 2016, Dec., 2016



#### IEDM 2016, #2.7 IBM/GF/Samsung



Fig. 7. 7nm patterning approaches.

Source: R. Xie, et al, "A 7nm FinFET Technology Featuring EUV Patterning and Dual Strained High Mobility Channels," IEDM Technical Digest, pp.47-50, pp, 2016



## IEDM 2016, #2.7 IBM/GF/Samsung



Fig. 8. (a) Schematic flow for self-aligned quadruple FIN patterning (SAQP); (b) Topdown SEM of the FINs formed with SAQP process. (c) un-optimized vs (d) Optimized SAQP process.

Source: R. Xie, et al, "A 7nm FinFET Technology Featuring EUV Patterning and Dual Strained High Mobility Channels," IEDM Technical Digest, pp.47-50, pp, 2016



**Fig. 12.** (a)(b) Improved common process window in DOF and printing resolution achieved with EUV, compared to optical litho. (c)(d) Topdown SEMs of typical MOL EUV patterning with 45°, 90° cross-couple, respectively (24nm trench width).



#### **EUV Infrastructure Readiness**

| EUV Infrastructure                   | 11/14 | 10/15 | 11/15 | 10/16 | 02/17 |
|--------------------------------------|-------|-------|-------|-------|-------|
| E-beam mask<br>inspection            |       |       |       |       |       |
| AIMS Mask<br>Inspection              |       |       |       |       |       |
| Actinic Blank<br>Inspection          |       |       |       |       |       |
| EUV<br>Pellicle                      |       |       |       |       |       |
| EUV Blank<br>Quality                 |       |       |       |       |       |
| Blank multi-layer<br>deposition tool |       |       |       |       |       |
| EUV Resist QC                        |       |       |       |       |       |
| Actinic Patterned<br>Mask Inspection |       |       |       |       |       |

Source: https://staticwww.asml.com/doclib/investor/presentations/2018/asml\_20180314\_2018-03-14\_BAML\_Taiwan\_March\_2018\_FINAL.pdf



## **Reticle Front-Side Defects**

Two-fold approach to eliminate reticle front-side defects



#### 1. Clean system (without pellicle)



#### 2. EUV pellicle





Source: A. Yen, "Continued Scaling in Semiconductor Manufacturing with EUV Lithography," 2018 EUVL Workshop, 2018



## **Defect Performance on EUV Scanners**



Fig.9: Continuously improving defect performance roadmap on EUV scanners towards HVM requirements

Source: Roderik van Es et al., "EUV for HVM: towards and industrialized scanner for HVM NXE3400B performance update," SPIE Advanced Lithography, 2018



# Pellicle for EUV Mask



Fig.10: The major pellicle improvements in the past year, 83% pellicle transmission (left), delivery to customers of automated pellicle mounting equipment (middle) and 0 defect pellicle performance (right)

Source: Roderik van Es et al., "EUV for HVM: towards and industrialized scanner for HVM NXE3400B performance update," SPIE Advanced Lithography, 2018



# Lasertec's Mask Inspection Tools

#### Second Half of Fiscal Year 2018 - Goals and Actions (2) Promotion of EUV-related Systems



Source: Lasertec Corporation, "First Half of Fiscal Year ending June 2018 Financial Results," Feb. 7, 2018 http://v4.eir-parts.net/DocumentTemp/20181018\_015008987\_djhaj255e3zsh0nchg2znof5\_0.pdf



# Stochastic Effects in EUV Lithography



Source: P. De Bisshop and E. Hendrickx, "Stochastic effects in EUV lithography," SPIE Advanced Lithography, 2018. Proc. SPIE 10583, Extreme Ultraviolet (EUV) Lithography IX, 105831K, doi: 10.1117/12.2300541



# Stochastic Effects in EUV Lithography



Source: P. De Bisshop and E. Hendrickx, "Stochastic effects in EUV lithography," SPIE Advanced Lithography, 2018. Proc. SPIE 10583, Extreme Ultraviolet (EUV) Lithography IX, 105831K, doi: 10.1117/12.2300541



# EUV-FEL (Free Electron Laser)



Source: H. Kawata, "Strategy to realize the EUV-FEL high power light source," 2016 International Symposium on Extreme Ultraviolet Lithography, Hiroshima, Japan, Oct. 24, 2016



# **Key Challenges**



#### **Key Challenges 2019**

- Materials :
  - some new suppliers (Zeon, PiBond, IM)
  - Inpria scaling
  - Defects/stochastic performance still a concern. Will 3400 solve this ? (comparison)
- Source
  - 250W or 500W ? first consistency needed
  - 1000 wafers per day (not at 250W), 140 wph
- Masks :
  - Good progress on actinic PMI
  - Pellicle still a major challenge
  - · Alternative absorber key for extendibility
- · End customers : no presentation or not attending
- · Resist vendors work with their customers and are not allowed to share results

Input from 16th International EUVL Symposium Steering Committee. Monterey, CA, September 20, 2018





### **EUVL insertion for 2019 : optimism**

| Short term development                                     | Average | StdDev |
|------------------------------------------------------------|---------|--------|
| 1. Multiple EUV materials capable for insertion            | 2.29    | 1.26   |
| 2. NXE3400 with 250W in the field now at >80% availability | 2.64    | 1.27   |
| 3. Insertion happening without pellicle                    | 2.71    | 0.96   |
| 4. Actinic mask making tools going into production         | 3.64    | 0.84   |

Ranked by 16th International EUVL Symposium Steering Committee. Monterey, CA, September 20, 2018



Source: "Closing Address,"SPIE Photomask Technology + EUV Lithography 2018, Monterey, U.S.A., Sept. 20, 2018



#### **EUVL extension challenges**

| Long term development concerns                                        | Average | StdDev |
|-----------------------------------------------------------------------|---------|--------|
| 1. Resist resolution, stochastics, and sensitivity met simultaneously | 1.28    | 0.82   |
| 2. Keeping mask defect free (pellicle, or other)                      | 2.57    | 0.85   |
| 3. Reliable source >250W operation with >90% availability             | 2.71    | 0.99   |
| 4. Continue actinic PMI and new mask material development             | 3.43    | 0.5    |

Ranked by 16th International EUVL Symposium Steering Committee. Monterey, CA, September 20, 2018



Source: "Closing Address,"SPIE Photomask Technology + EUV Lithography 2018, Monterey, U.S.A., Sept. 20, 2018



#### **EUVL insertion for 2019 is happening**

| 2014                                                            | 2015                                                                                 | 2016                                                                                 | 2017                                                                                 | 2018                                                                     |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| 1.Reliable source<br>operation with ><br>75% availability       | 1.Reliable source<br>operation with > 85%<br>availability                            | 1.Reliable source<br>operation with<br>>85% availability                             | 1.Reliable source<br>>250W operation with<br>>90% availability                       | <ol> <li>Multiple EUV<br/>materials capable<br/>for insertion</li> </ol> |  |
| 2.Resist resolution,<br>sensitivity & LER<br>met simultaneously | 2. Resist resolution,<br>sensitivity & LER met<br>simultaneously                     | 2. Resist resolution,<br>sensitivity & LER met<br>simultaneously                     | 2. Resist resolution,<br>stochastics, and<br>sensitivity met<br>simultaneously       | 2. NXE3400 with 250W in<br>the field now at >80%<br>availability         |  |
| 3.Mask yield & defect<br>inspection/review<br>infrastructure    | <ol> <li>Mask yield &amp; defect<br/>inspection/review<br/>infrastructure</li> </ol> | 3. Keeping mask<br>defect free                                                       | 3. Keeping mask defect free                                                          | 3. Insertion<br>happening without<br>pellicle                            |  |
| 3. Keeping mask defect free                                     | 4. Keeping mask defect free                                                          | <ol> <li>Mask yield &amp; defect<br/>inspection/review<br/>infrastructure</li> </ol> | <ol> <li>Mask yield &amp; defect<br/>inspection/review<br/>infrastructure</li> </ol> | 4. Actinic mask making<br>tools going into<br>production                 |  |
| ΙΠΕΟ Ευκεκά ΕΙΔΕΣ SPIE.                                         |                                                                                      |                                                                                      |                                                                                      |                                                                          |  |

Source: "Closing Address,"SPIE Photomask Technology + EUV Lithography 2018, Monterey, U.S.A., Sept. 20, 2018



#### **EUVL extension challenges**

| 2014                                                            | 2015                                                             | 2016                                                             | 2017                                                                           | 2018                                                                           |  |
|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| 1.Reliable source<br>operation with<br>>75% availability        | 1.Reliable source<br>operation with<br>> 85% availability        | 1.Reliable source<br>operation with<br>> 85% availability        | 1. Resist resolution,<br>stochastics, and<br>sensitivity met<br>simultaneously | 1. Resist resolution,<br>stochastics, and<br>sensitivity met<br>simultaneously |  |
| 2.Resist resolution,<br>sensitivity & LER<br>met simultaneously | 2. Resist resolution,<br>sensitivity & LER met<br>simultaneously | 2. Resist resolution,<br>sensitivity & LER<br>met simultaneously | 2. Reliable source<br>>250W operation with<br>>90% availability                | 2. Keeping mask defect<br>free<br>(pellicle, or other)                         |  |
| 3.Mask yield & defect<br>inspection/review<br>infrastructure    | 3. Mask yield & defect<br>inspection/review<br>infrastructure    | 3. Keeping mask<br>defect free                                   | 3. Keeping mask<br>defect free                                                 | 3. Reliable source<br>>250W operation with<br>>90% availability                |  |
| <ol> <li>Keeping mask<br/>defect free</li> </ol>                | 4. Keeping mask defect free                                      | 4. Mask yield & defect<br>inspection/review<br>infrastructure    | 4. Mask yield & defect<br>inspection/review<br>infrastructure                  | 4. Continue actinic PMI<br>and new mask<br>material development                |  |
| <b>ΙΠΕC</b> Ευκεκά <b>ΕΠΕΕ</b> SPIE.                            |                                                                  |                                                                  |                                                                                |                                                                                |  |

Source: "Closing Address,"SPIE Photomask Technology + EUV Lithography 2018, Monterey, U.S.A., Sept. 20, 2018



#### Mass production with EUV



Source: 1) Customers - public statements,, IC Knowledge LLC; 2) ASML extrapolations

Source:http://staticwww.asml.com/doclib/investor/investor\_day/asml\_20161031\_04 \_Investor\_Day\_2016\_EUV\_and\_its\_Business\_Opportunity\_HMeiling.pdf



#### Mass Production with EUV: TSMC

#### **TSMC to Start 5nm Production in April**

#### 5 October 2018

SAN JOSE, Calif. — TSMC taped out its first chip in a process making limited use of extreme ultraviolet lithography and will start risk production in April on a 5-nm node with full EUV.

•••

In process technology, TSMC announced that it taped out a customer chip in an N7+ node that can use EUV on up to four layers. Its N5 that will use EUV on up to 14 layers will be ready for risk production in April. EUV aims to lower costs by reducing the number of masks required for leading-edge designs.

Source: EE Times Asia https://www.eetasia.com/news/article/18100502tsmc-to-start-5nm-production-in-april

- 2019年4月にEUVによる5nm世代の リスク生産を開始
- N7+世代ではEUVを4層まで利用可
- N5世代ではEUVを14層まで利用可



#### Mass Production with EUV: Samsung

#### Samsung Ramps 7nm EUV Chips

17 October 2018

SAN JOSE, Calif. — The race is on to get the first chip made with extreme ultraviolet lithography out the foundry door.

Samsung said it has taped out and is ramping multiple 7nm chips using EUV following a similar announcement earlier this month from its larger foundry rival TSMC.

••

In its core memory business, Samsung said that it is sampling 256-GByte RDIMMs made with its 16-Gbit chips.

•••

The chips are made in a **1y-nm** process first described a year ago. It was not clear whether EUV is being applied to the **1y** process. However, follow-on **1z** and **1a** nodes will increasingly use EUV, suggested Samsung's head of DRAM development, Seong Jin Jang, in a talk here.

Source: EE Times https://www.eetimes.com/document.asp?doc\_id=1333881

- EUVを使って複数の7nm( <mark>
  ロジック</mark>)チップの量産開 始
- 1y世代の16Gbit DRAMチッ プによる256GByte RDIMM\* をサンプリング中。この世 代でEUVが使われているか どうかはわからない
- <u>1zと1a</u>世代のDRAMでは EUVの利用が増えると発言

\* RDIMM: registered dual in-line memory moduleの略。Registered Bufferを内臓したメモリモジュー ル。サーバなどで使われる。



# Summary

- EUV source power of 250W has been achieved.
- Key challenges in EUV Lithography are pellicle, actinic pattern inspection, stochastics, etc.
- EUV lithography will be used in mass production tool for 7nm or 5nm logic products and beyond.
- EUV-FEL is a possible solution as an EUV source with higher average power than 1 kW. Its cost of ownership, peak power, coherence of the EUV-FEL source might be the potential problems to be solved



# Glossary

- CD: Critical Dimension
- DP: Double Patterning
- DSA: Directed Self Assembly
- EUVL: Extreme Ultraviolet Lithography
- LER: Line Edge Roughness
- LWR: Line Width Roughness
- ML: Maskless Lithography
- NA: Numerical Aperture
- IRDS: International Roadmap for Devices and Systems
- ITRS: International Technology Roadmap for Semiconductors
- SADP: Self Aligned Double Patterning
- SAQP: Self Aligned Quadruple Patterning
- QP: Quadruple Patterning
- SP: Quadruple Patterning

