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Two-Dimensional Electronic Structure of La and P Co-Doped 
CaFe2As2 Studied by ARPES
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The relation between the occurrence of high-temperature superconductivity and the underlying electronic structure 
in iron-based superconductors is a major unresolved problem. We revealed the electronic structure of La and P 
co-doped CaFe2As2 superconductor with the critical temperature (Tc) = 45 K by angle-resolved photoemission 

spectroscopy. Its Fermi surface topology consists of nearly two-dimensional hole- and electron-like Fermi surfaces. 
Compared to other high-Tc iron-based superconductors, we discuss the relationship between the dimensionality of 
Fermi surface topology and the value of Tc.

The discovery of high critical temperature (high-Tc) 
superconductivity in LaFeAsO1-xFx

 [1] has triggered in-
tensive research on iron-based superconductors [2-4]. 
Density functional theory calculations for iron-based 
superconductors predict that Fermi Surfaces (FSs) 
in these materials are composed of nearly cylindrical 
(two-dimensional) hole- and electron-like FSs at the 
Brillouin zone center and corner, respectively, as shown 
in Fig. 1(a) [5, 6]. For the emergence of iron-based su-
perconductivity, the FSs nesting that can enhance spin 
and/or orbital fluctuations has been believed to be im-
portant for realizing exotic Cooper pairing [5-8].

Experimentally, FS topology and its nesting condi-
tion for several iron-based superconductors have been 
directly studied by angle-resolved photoemission spec-
troscopy (ARPES) [9-22]. The FS topology for AFe2As2 
(so-called 122-type bulk superconductors, where A rep-
resents alkali or alkali-earth metals) has revealed that 
high-Tc 122-type bulk superconductors have both hole- 
and electron-like FSs with the electron-like FSs in com-
mon [19-22]. However, the dimensionality of the FSs, 
especially hole-like FSs, shows marked material depen-
dence: while in hole-doped Ba1-xKxFe2As2 (Tc = 38 K), 
all hole-like FSs have a cylindrical shape [Fig. 1(b)] [19, 
20], in electron-doped Ba(Fe1-xCox)2As2 (Tc = 25 K), 
two- and three-dimensional hole-like FSs are present 
[Fig. 1(c)] [21, 22]. Since the presence of such a three-
dimensional FS is not favorable for superconductivity 

resulting from the FS nesting, the relationship between 
the FS nesting and superconductivity is still unclear in 
iron-based superconductors. In this regard, the recent 
discovery of electron-doped CaFe2As2 with Tc = 45 K, 
namely La and P co-doped Ca1-xLaxFe2(As1-xPx)2 [23], 
may be of importance. This value of Tc is the highest 
yet reported among iron-based bulk superconductors 
that have been studied by ARPES. In order to check the 
characteristic FS topology for the emergence of high-Tc 
in iron-based superconductors, we performed ARPES 
measurements for Ca0.82La0.18Fe2(As0.94P0.06)2 supercon-
ductor [24].

High-quality single crystals of Ca0.82La0.18Fe2(As0.94P0.06)2 
were grown as described elsewhere [23]. ARPES mea-
surements were carried out at BL-28A of the Photon 
Factory using circularly polarized light (hv = 40–86 eV) 
and at BL-9A of the Hiroshima Synchrotron Radia-
tion Center using circularly and linear polarized light 
(hv = 19–31 eV). The total energy resolution was set 
to 10–30 meV. Clean surfaces were obtained by in situ 
cleaving of crystal in a working vacuum better than 
3 × 10-8 Pa and measured at 60 K (above Tc).

Figure 1: (a) Fermi surface (FS) and the nesting with nesting vector 
Q in the kx-ky plane for iron-based superconductors. The sky-blue 

and orange curved lines represent hole- and electron-like FSs, re-
spectively. (b)-(d) Hole-like FSs in the kz–k ǀǀ plane for Ba1-xKxFe2As2, 
Ba(Fe1-xCox)2As2, and Ca0.82La0.18Fe2(As0.94P0.06)2 obtained from 
refs. 19, 21 and 24, respectively.

In Figs. 2(a) and (b), we show ARPES intensity plots 
taken along the Γ-X direction with s- and p-polarized 
light, respectively (hv = 31 eV). We observed one 
hole-like band whose top is located around 30 meV 
below EF (a1) and two hole-like bands with crossing 
EF (a2 and b). In the s-pol data along the Z-X [Fig. 2(c)], 
we found that the top of the a1 band is located around 
10 meV below EF, indicating that the a1 band cannot 
form FS between the Γ and Z points. On the other 
hand, the a2 and b bands cross EF at Z, as seen in the 
p-pol data [Fig. 2(d)]. Since the position of the Fermi 
wave vector (kF) of the a2 and b bands has almost no kz 
dependence [Fig. 2(h)], we find these bands form nearly 
two-dimensional hole-like FSs. Around the M and A 
points, we observed two electron-like bands (e and d) as 
seen in Figs. 2(e) and (f). These form elliptical electron-
like FSs [Fig. 2(g)], and their kF position shows sizeable 
undulation along the kz direction [Fig. 2(i)] reflecting 
the elliptical shape of these FSs and the shape of the 
boundary in the body-centered tetragonal Brillouin zone. 
Figs. 2(g-i) show the shape of the four FSs (a2, b, e, d) 
observed by our ARPES measurements [24]. The to-
tal carrier number deduced from the volume of FSs of 

0.12 ± 0.07 e/Fe agrees with the value expected from 
the chemical composition of 0.09 e/Fe. 

Figure 2: (a), (b) ARPES intensity plots taken along the Γ-X 
direction with s- and p-polarized light, respectively (hv = 31 eV). (c), 
(d) are the same as (a), (b) but measured along the Z-X direction 
(hv = 19 eV). (e), (f) ARPES intensity plots taken at M and A 
points, respectively (hv = 69 eV and hv = 86 eV). In (a)-(f), the 
white curves represent the band dispersion. (g) The FS topology 
in the kx-ky plane. The blue and red curved lines represent hole- 
and electron-like FSs, respectively. (h) and (i) The FS topology 
in the kx-kz plane. In (h) and (i), open circles show the positions 
of kF deduced from the momentum distribution curve analysis of 
photon-energy dependent ARPES data [24].

Next we discuss the implications of the pres-
ent ARPES results for iron-based superconductiv-
ity. As shown in Figs. 1(b) and (d), all hole-like FSs 
in hole-doped Ba1-xKxFe2As2 and electron-doped 
Ca0.82La0.18Fe2(As0.94P0.06)2 have nearly a two-dimension-
al shape in common [19, 20]. From these results, we 
suggest that the two-dimensional FS topology, leading 
to the good FS nesting condition, is universal for high-Tc 
superconductivity regardless of the type of doped car-
rier. This supports the unconventional mechanisms for 
superconductivity in iron-based superconductors.

In summary, we investigated the three-dimen-
sional electronic structure near EF in electron-doped 
Ca0.82La0.18Fe2(As0.94P0.06)2 (Tc = 45 K). We observed a 
nearly two-dimensional FS topology similar to that of 
Ba1-xKxFe2As2, demonstrating the common identity of 
the electronic structure to induce high-Tc in 122-type 
iron-based superconductors. 
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