he relation between the occurrence of high-temperature superconductivity and the underlying electronic structure
in iron-based superconductors is a major unresolved problem. We revealed the electronic structure of La and P
co-doped CaFe,As, superconductor with the critical temperature (T.) = 45 K by angle-resolved photoemission
spectroscopy. Its Fermi surface topology consists of nearly two-dimensional hole- and electron-like Fermi surfaces.
Compared to other high-T, iron-based superconductors, we discuss the relationship between the dimensionality of

Fermi surface topology and the value of T..

The discovery of high critical temperature (high-T,)
superconductivity in LaFeAsO,F,[1] has triggered in-
tensive research on iron-based superconductors [2-4].
Density functional theory calculations for iron-based
superconductors predict that Fermi Surfaces (FSs)
in these materials are composed of nearly cylindrical
(two-dimensional) hole- and electron-like FSs at the
Brillouin zone center and corner, respectively, as shown
in Fig. 1(a) [5, 6]. For the emergence of iron-based su-
perconductivity, the FSs nesting that can enhance spin
and/or orbital fluctuations has been believed to be im-
portant for realizing exotic Cooper pairing [5-8].

Experimentally, FS topology and its nesting condi-
tion for several iron-based superconductors have been
directly studied by angle-resolved photoemission spec-
troscopy (ARPES) [9-22]. The FS topology for AFe,As,
(so-called 122-type bulk superconductors, where A rep-
resents alkali or alkali-earth metals) has revealed that
high-T, 122-type bulk superconductors have both hole-
and electron-like FSs with the electron-like FSs in com-
mon [19-22]. However, the dimensionality of the FSs,
especially hole-like FSs, shows marked material depen-
dence: while in hole-doped Ba, ,K,Fe,As, (T, = 38 K),
all hole-like FSs have a cylindrical shape [Fig. 1(b)] [19,
20], in electron-doped Ba(Fe,,Co,),As, (T, = 25 K),
two- and three-dimensional hole-like FSs are present
[Fig. 1(c)] [21, 22]. Since the presence of such a three-
dimensional FS is not favorable for superconductivity
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Figure 1: (a) Fermi surface (FS) and the nesting with nesting vector
Q in the k-k, plane for iron-based superconductors. The sky-blue
and orange curved lines represent hole- and electron-like FSs, re-
spectively. (b)-(d) Hole-like FSs in the k,—kplane for Ba, K,Fe,As,,
Ba(Fe,,Co,),As,, and Ca,gla, sFe,(ASyqsPo0s)> Obtained from
refs. 19, 21 and 24, respectively.
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resulting from the FS nesting, the relationship between
the FS nesting and superconductivity is still unclear in
iron-based superconductors. In this regard, the recent
discovery of electron-doped CaFe,As, with T, = 45 K,
namely La and P co-doped Ca,,La,Fe,(As,,P,), [23],
may be of importance. This value of T, is the highest
yet reported among iron-based bulk superconductors
that have been studied by ARPES. In order to check the
characteristic FS topology for the emergence of high-T,
in iron-based superconductors, we performed ARPES
measurements for Ca, g,La, 15Fe.(ASye4Po0s)> SUpPErcon-
ductor [24].

High-quality single crystals of Ca, g,Lag 15F€2(ASg.64Po 06)2
were grown as described elsewhere [23]. ARPES mea-
surements were carried out at BL-28A of the Photon
Factory using circularly polarized light (hv = 40-86 eV)
and at BL-9A of the Hiroshima Synchrotron Radia-
tion Center using circularly and linear polarized light
(hv = 19-31 eV). The total energy resolution was set
to 10-30 meV. Clean surfaces were obtained by in situ
cleaving of crystal in a working vacuum better than
3 x 10® Pa and measured at 60 K (above T,).

In Figs. 2(a) and (b), we show ARPES intensity plots
taken along the I'-X direction with s- and p-polarized
light, respectively (hv = 31 eV). We observed one
hole-like band whose top is located around 30 meV
below E: (a;) and two hole-like bands with crossing
E: (o, and B). In the s-pol data along the Z-X [Fig. 2(c)],
we found that the top of the a; band is located around
10 meV below Eg, indicating that the o, band cannot
form FS between the I and Z points. On the other
hand, the a, and B bands cross E: at Z, as seen in the
p-pol data [Fig. 2(d)]. Since the position of the Fermi
wave vector (k:) of the o, and  bands has almost no k,
dependence [Fig. 2(h)], we find these bands form nearly
two-dimensional hole-like FSs. Around the M and A
points, we observed two electron-like bands (¢ and ) as
seen in Figs. 2(e) and (f). These form elliptical electron-
like FSs [Fig. 2(g)], and their k: position shows sizeable
undulation along the k, direction [Fig. 2(i)] reflecting
the elliptical shape of these FSs and the shape of the
boundary in the body-centered tetragonal Brillouin zone.
Figs. 2(g-i) show the shape of the four FSs (o, B, €, d)
observed by our ARPES measurements [24]. The to-
tal carrier number deduced from the volume of FSs of

electron FS
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Figure 2: (a), (b) ARPES intensity plots taken along the I'-X
direction with s- and p-polarized light, respectively (hv = 31 eV). (c),
(d) are the same as (a), (b) but measured along the Z-X direction
(hv = 19 eV). (e), (f) ARPES intensity plots taken at M and A
points, respectively (hv = 69 eV and hv = 86 eV). In (a)-(f), the
white curves represent the band dispersion. (g) The FS topology
in the -k, plane. The blue and red curved lines represent hole-
and electron-like FSs, respectively. (h) and (i) The FS topology
in the K-k, plane. In (h) and (i), open circles show the positions
of k- deduced from the momentum distribution curve analysis of
photon-energy dependent ARPES data [24].

0.12 + 0.07 e/Fe agrees with the value expected from
the chemical composition of 0.09 e/Fe.

Next we discuss the implications of the pres-
ent ARPES results for iron-based superconductiv-
ity. As shown in Figs. 1(b) and (d), all hole-like FSs
in hole-doped Ba, ,K,Fe,As, and electron-doped
Cayglag 1sFes(AsyqsPoos). have nearly a two-dimension-
al shape in common [19, 20]. From these results, we
suggest that the two-dimensional FS topology, leading
to the good FS nesting condition, is universal for high-T,
superconductivity regardless of the type of doped car-
rier. This supports the unconventional mechanisms for
superconductivity in iron-based superconductors.

In summary, we investigated the three-dimen-
sional electronic structure near E: in electron-doped
Cagglag 15Fes(AsesPoos)s (T, = 45 K). We observed a
nearly two-dimensional FS topology similar to that of
Ba,,K,Fe,As,, demonstrating the common identity of
the electronic structure to induce high-T, in 122-type
iron-based superconductors.
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