Comparative Crystal Chemistry of Perovskite-to-Postperovskite Transitions in Germanates under High Pressure

ostperovskite with the CalrO₃ structure in (Mg, Fe)SiO₃ characterizes the D" layer in the lowermost mantle of the Earth. Because of the scarcity of examples of postperovskites in analogue compounds, it is difficult to investigate the criteria for crystallization of the postperovskite structure. One solution is to explain the transition to the CalrO₃-type postperovskite structure by the extrapolated compressive behavior of the GdFeO₃-type orthorhombic perovskite. Therefore, we conducted in situ X-ray diffraction experiments to follow the structural change of germanate perovskites. Based on the crystallographic data of $AGeO_3$ (A = Mn, Zn, and Mg), we developed a comparative crystal chemistry approach to stabilize the CalrO₃ structure.

Postperovskite phase transition to the CalrO₃-type structure in magnesium silicates characterizes the structure of the D" layer in the lowermost mantle of the Earth [1]. Although the change in density for the perovskite-topostperovskite transition is less than a few percent, the structural change from a corner sharing framework to a layered structure explains the anisotropy in the seismic data of the D" layer.

Since postperovskite has been found in MgSiO₃, many ABO₃ compounds have been tested for transformation to the postperovskite phase. However, it is difficult to investigate the criteria for transformation to the CalrO₃-type structure. One of the reasons is that the CalrO₃ structure is not a typical structure of most ABO₃ perovskites, except for the related compounds of CalrO₃, such as CaRhO₃ [2], CaPtO₃ [3], and CaRuO₃ [4]. In fact, postperovskites are not found in silicate except for MgSiO₃. Moreover, titanate perovskites, such as FeTiO₃ [5], MnTiO₃ [6], CaTiO₃ [7], and ZnTiO₃ [8], prefer to decompose to dense oxide compounds rather than to crystallize in the CalrO₃ structure. However, multiple germanate compounds have been reported to crystallize in the CalrO₃ structure. Perovskite–postperovskite transitions of MgGeO₃ [9] and MnGeO₃ [10] have been confirmed to occur at 55 and 65 GPa. Recently, using the in situ X-ray diffraction method with a laser-heated diamond anvil cell, we found that the perovskite-postperovskite transition in ZnGeO₃ occurs above 110–130 GPa [11]. Considering the similarity of the cationic radius of Zn²⁺ with those of Mg²⁺ and Mn²⁺, the transition pressure was unexpectedly high compared with the transition pressure in other germanate compounds.

Theoretical calculations suggest that distortion of GdFeO₃-type orthorhombic perovskite could trigger the postperovskite transition [12]. It is well-known that the Goldschmidt tolerance factor represents the distortion in ABO₃ perovskites [13]. However, the tolerance factor based on the ionic radii only reflects the distortion at atmospheric pressure. Because the orthorhombic distortion is derived from the rotation of the BO₆ octahedra, the rotation angle Φ , which is calculated from the lattice parameters as $\Phi = \cos^{-1}(\sqrt{2}c^2/ab)$, is a useful indicator of the distortion to the postperovskite transition [14]. Our recent studies of fluoride perovskite with sodium fluorides, such as NaCoF₃, NaNiF₃ and NaZnF₃, indicated that the transition starts at $\Phi_{tr} = 24-27^{\circ}$. Irrespective of the octahedral constituent cations, other known postperovskites in MgSiO₃ and MgGeO₃ also

Figure 1: Schematic illustrations of the phase transition from the perovskite (left) to the postperovskite phase (right).

Figure 2: GeO₆ rotation angle (ϕ) in perovskites as a function of pressure. Diamonds, squares, and circles represent the ϕ values of MgGeO₃, ZnGeO₃, and MnGeO₃, respectively.

exhibit a transition at around $\Phi_{tr} = 25^{\circ}$. The above example suggests that $\Phi_t \approx 25^\circ$ would be a critical angle to induce the phase transition to postperovskite. The transformation scheme is shown in Fig. 1. To examine the Φ value in the present germanate compositions, the lattice parameters of the perovskite and postperovskite phases of ZnGeO₃ and MnGeO₃ were determined under high pressure with careful annealing with a laser beam to reduce the full-width at half maximum of the X-ray diffraction peaks. Figure 2 shows Φ of ZnGeO₃ and MnGeO₃ with pressure change. In this figure, ϕ of MgGeO₃, which is calculated from literature data [15], is included for comparison. The gradient of Φ is almost independent of the divalent cation species. Interestingly, Φ_{tr} of ZnGeO₃ is also located at around $\Phi_{tr} = 25^{\circ}$. Therefore, a rather high transition pressure in ZnGeO₃ is reasonable with respect to the rotation of the GeO₆ octahedra. Instead, according to Φ_{tr} the low value of MnGeO₃ ($\Phi_{tr} = 18^{\circ}$) might be an exception. The ionic radius of Mn²⁺ (0.96 Å) is significantly larger than the radii of Mg²⁺ (0.89 Å) and Zn²⁺ (0.90 Å). Therefore, in perovskites with large divalent cations, the cornersharing GeO₆ frameworks cannot generate sufficient space to incorporate the cations by increasing the tilting angle. These frameworks likely decompose to form the postperovskite structure without a large rotation of the GeO₆ octahedra. Furthermore, in view of the geometry of the CalrO₃ structure, the *b* axis should be the most sensitive to the divalent cationic radius because divalent cations incorporate into the GeO₆ layered structure. In fact, the *b* axis of $MnGeO_3$ is considerably longer than the *b* axes of other germanates. This can be attributed to the ability of the postperovskite structure to incorporate large divalent cations.

REFERENCES

- [1] M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Science 304, 855 (2004).
- [2] Y. Shirako, H. Kojitani, M. Akaogi, K. Yamaura, and E. T. -Muromachi, Phys. Chem. Miner. 36, 455 (2009).
- [3] K. Ohgushi, Y. Matsushita, N. Miyajima, Y. Katsuya, M. Tanaka, F. Izumi, H. Gotou, Y. Ueda, and T. Yagi, *Phys. Chem. Miner*. 35, 189 (2008).
- [4] H. Kojitani, Y. Shirako, and M. Akaogi, Phys. Earth Planet. Inter. 165, 127 (2007).
- [5] D. N. -Hamane, M. G. Zhang, T. Yagi, and Y. M. Ma, Am. Mineral. 97, 568 (2012).
- [6] T. Okada, T. Yagi, and D. N. -Hamane, Phys. Chem. Miner. 38, 251 (2011).
- [7] D. Hamane and T. Yagi, Review of High Pressure Science and Technology 22, 246 (2012).
- [8] M. Akaogi, K. Abe, H. Yusa, H. Kojitani, D. Mori, and Y. Inaguma, Phys. Chem. Miner. 42, 421 (2015).
- [9] E. Ito, D. Yamazaki, T. Yoshino, H. Fukui, S. M. Zhai, A. Shatzkiy, T. Katsura, Y. Tange, and K. Funakoshi, Earth. Planet. Sci. Lett. 293, 84 (2010).
- [10] D. Yamazaki, E. Ito, T. Katsura, T. Yoshino, S. M. Zhai, H. Fukui, A. Shatskiy, X. Z. Guo, S. M. Shan, T. Okuchi, Y. Tange, Y. Higo, and K. Funakoshi, Am. Mineral. 96, 89 (2011).
- [11] H. Yusa, T. Tsuchiya, M. Akaogi, H. Kojitani, D. Yamazaki, N. Hirao, Y. Ohishi, and T. Kikegawa, Inorg. Chem. 53, 11732 (2014).
- [12] T. Tsuchiya, J. Tsuchiya, K. Umemoto, and R. M. Wentzcovitch, Earth. Planet. Sci. Lett. 224, 241 (2004).
- [13] V. M. Goldschmidt, Naturwissenschaften 14, 477 (1926).
- [14] M. O'keeffe, B. G. Hyde, and J. O. Bovin, Phys. Chem. Miner. 4, 299 (1979)
- [15] C. E. Runge, A. Kubo, B. Kiefer, Y. Meng, V. B. Prakapenka, G. Shen, R. J. Cava, and T. S. Duffy, Phys. Chem. Miner. 33. 699 (2006).

BEAMLINE

AR-NE1A

H. Yusa¹ and T. Kikegawa² (¹NIMS, ²KEK-IMSS-PF)