BL-8A, BL-8B/2012S2-005

AFe₂(As_{1-x}P_x)₂(A=Ba/Sr, Sr/Ca, Eu)における 結晶構造の異方性、FeAs₄四面体の局所構造と *T*_cの関係 Relationship among structural anisotropy, local structure of FeAs₄ tetrahedra and *T*_c in *A*Fe₂(As_{1-x}P_x)₂ (*A*=Ba/Sr, Sr/Ca, Eu) 足立徹^{1*}, 小林達也¹, 宮坂茂樹¹, 田島節子¹,

佐賀山基²,熊井玲児²,中尾裕則²,村上洋一² 「阪大院理 〒560-0043 大阪府豊中市待兼山町 1-1 ²KEK 物構研 PF/CMRC 〒305-0801 つくば市大穂 1-1

1 <u>はじめに</u>

鉄系超伝導体において、FeAs4 四面体の局所構造 と *T*cの間には相関があることが知られている[1-2]。 一方で、*T*cと関連した電子構造として、ネスティン グ条件とリンクしたフェルミ面のトポロジーが挙げ られる。今回、*A*Fe₂(As_{1-x}P_x)₂(*A*=Ba/Sr, Sr/Ca, Eu)にお ける結晶構造を系統的に変化させた際、その電子相 図がどのように変化するかについて注目した。*A* サ イトの変化により、フェルミ面の異方性、次元性が 変化することを期待した。

2 実験

磁化測定、電気抵抗率測定、4 軸 X 線回折実験、 高エネルギー加速器研究機構 Photon Factory BL-8A, 8B での X 線回折実験を行った。

3 <u>結果および考察</u>

4軸X線回折実験の結果、A=Ba, Ba/Sr, Sr, Sr/Ca, Eu の順に格子定数及び結晶構造の異方性の指標である c/aが減少していることがわかった。また、P置換量 に対するc/aの減少率に注目すると、A=Ba, Ba/Sr, Sr では、ほぼ変化しないが、A=Sr, Sr/Ca, Euと変化す るにつれ、減少率が増大することがわかった。

磁化測定、電気抵抗率測定からA=Ba/Sr, Sr/Ca, Euの電子相図を作成した。それらを先行研究による A=Ba, Sr, Caの結果と合わせて、図1に示す[3-5]。 A=Ba, Ba/Sr, Sr, Sr/Ca, Euの系で最大T_cはほぼ30Kで一定であることがわかった。一方、<math>A=Ba, Ba/Sr, Sr,Sr/Ca, Euにかけて、c/aは大きく変化しており、 T_c と c/aに相関は見られなかった。また、A=Ba, Ba/Sr, Srまでは、最大 T_c を示し、反強磁性秩序が消失する組 成 x_c に有意な差は見られなかったが、A=Sr, Sr/Ca, Euと変化するにつれ、 x_c は低置換領域に移動していく 振る舞いが見られた。これらの振る舞いは、P置換 に対するc/aの減少率の変化と相関がある。これは、 c/aの変化に伴うフェルミ面の異方性の変化により、 ネスティング条件が悪化したためだと考えられる。

これらの結果を踏まえて、 x_c において最大 T_c が変化しない原因を結晶構造の観点から議論するために、 x_c における $FeAs_4$ 四面体の局所構造解析を行った。 その結果、A=Ba, Ba/Sr, Sr, Sr/Caにおいて、 x_c は大き く異なるにも関わらず、Fe 面からの As の高さであ る h_{Pn} はほぼ一定であることがわかった。このこと から、 T_c は FeAs₄ 四面体の局所構造、特に h_{Pn} によ って制御されていると考えられる。一方、A=Eu の h_{Pn} は他の系とは異なっていることがわかった。先行 研究による FeAs₄ 四面体の局所構造と T_c の関係を考 慮すると、A=Eu の FeAs₄ 四面体の局所構造からはさ らに高い T_c が期待されるが、 Eu^{2+} の磁性及び c 軸長 が短くなったことによる構造不安定性により T_c が抑 制されたと考えられる。

図1:AFe₂(As_{1-x}P_x)₂の電子相図

参考文献

- C. H. Lee *et al.*, Solid State Communications 152, 644648 (2012)..
- [2] Y. Mizuguchi *et al.*, J. Phys. Soc. Jpn. **79**, 102001 (2010).
- [3] M. Nakajima *et al.*, J. Phys. Soc. Jpn. **81** 104710 (2012)
- [4] T. Kobayashi et al., Phys. Rev. B 87, 174520 (2013)
- [5] S. Kasahara et al. Phys. Rev. B 83, 060505(R) (2011)
- * adachi@tsurugi.phys.sci.osaka-u.ac.jp