XAFS Analysis of Ni Catalyst Supported on SiO₂-covered γ-Al₂O₃

Hiroaki Sai, Shohei Yamashita, Misaki Katayama, and Yasuhiro Inada* Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

1 Introduction

The Ni species supported on γ -Al₂O₃ easily converts to NiAl₂O₄ and its formation is one of the reasons of the catalytic deactivation [1]. On the other hand, our previous chemical state analysis of Ni catalysts has been clarified that the stable NiO species is generated on SiO₂ by the treatment under an oxidative environment at elevated temperature [2]. In this study, the XAFS analysis of the supported Ni species on γ -Al₂O₃ particles, which surface is covered by SiO2, has been carried out to evaluate the influence of the surface chemical species of the supporting material. Such SiO₂-covered γ-Al₂O₃ (SiO₂/γ-Al₂O₃) was prepared by the chemical modification technique for the surface of γ -Al₂O₃, and the Ni species was supported by the impregnation method. The purpose of this study is to clarify the chemical state variation of the supported Ni species of Ni/SiO₂/γ-Al₂O₃ in comparison to those of Ni/γ-Al₂O₃ and Ni/SiO₂.

2 Experiment

To prepare SiO_2/γ -Al₂O₃, the surface activated γ -Al₂O₃ by the reflux in hydrochloric acid for 6 h at 115 °C was mixed with triethyl octyl orthosilicate, and the suspended solution in toluene was refluxed for 48 h at 120 °C. The obtained powder was filtrated, dried under vacuum for 10 h at 110 °C, and subjected to the calcination in air for 5 h at 850 °C. All supported Ni catalysts were prepared using aqueous solution of nickel nitrate by the standard impregnation method, and were calcined in air for 3 h at 600 °C.

The X-ray absorption fine structure (XAFS) measurements were carried out at BL-9C of the Photon Factory (KEK). The *in-situ* XAFS measurements were performed during the temperature-programmed reduction (TPR) by H_2 and oxidation (TPO) by O_2 from room temperature to 900 °C. The gas atmosphere was switched at room temperature.

3 Results and Discussion

The XANES spectral change during the TPR process of Ni/SiO₂/ γ -Al₂O₃ and Ni/ γ -Al₂O₃ was shown in Fig. 1. The initial spectrum of both catalysts suggested the mixture of NiAl₂O₄ and NiO, indicating that the stable NiAl₂O₄ species was generated by the calcination procedure in air. The final spectrum was in agreement with that of Ni foil, and it was revealed that both NiAl₂O₄ and NiO species were reduced by H₂ to form the metallic Ni particles. The value of X-ray absorbance at the initial white-line peak top was plotted in Fig. 1(c) as a function of temperature. It was found that the reduction of NiAl₂O₄ and NiO started at *ca*. 700 °C on both SiO₂/ γ -Al₂O₃ and γ -Al₂O₃, and that the reduction

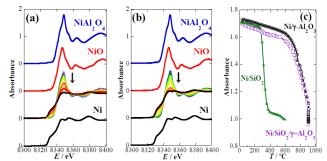


Fig. 1: XANES spectral change of Ni/SiO₂/ γ -Al₂O₃ (a) and Ni/ γ -Al₂O₃ (b) during the TPR process. The change of X-ray absorbance is plotted versus temperature for the Ni/SiO₂/ γ -Al₂O₃, Ni/ γ -Al₂O₃ and Ni/SiO₂ in (c).

temperature was remarkably increased by *ca*. 400 °C in comparison to NiO supported on SiO₂.

The XANES spectral change during the TPO process of the Ni/SiO₂/ γ -Al₂O₃ and the changes of X-ray absorbance are given in Fig. 2. A clear spectral change from metallic Ni to NiO was observed by the TPO procedure. Both the complete agreement of the final spectrum with NiO and the similar oxidation temperature to Ni/SiO₂ indicates that the formation of catalytically inactive NiAl₂O₄ is suppressed by the surface coverage of γ -Al₂O₃ with SiO₂.

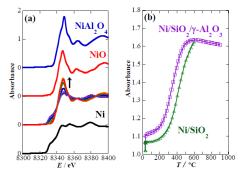


Fig. 2: XANES spectral change (a) and the X-ray absorbance change as a function of temperature (b) of $Ni/SiO_2/\gamma$ -Al₂O₃ during the TPO process. In (b), the absorbance change is compared with that of Ni/SiO₂.

References

[1] S. Wang and G. Q. (Max) Lu, *Ind. Eng. Chem. Res.*, **38**, 2615-2625 (1999).

[2] S. Yamashita, M. Katayama, and Y. Inada, *J. Phys. Conf. Ser.*, **430**, 012051 (2013).

* yinada@fc.ritsumei.ac.jp