Crystallographic analysis of enzymes involved in terpenoid biosynthesis

Takeo TOMITA, Kenichi MATSUDA, Masaya KOYASHIYAMA, Taro OZAKI, Sarina TANAKA, Makoto NISHIYAMA, and Tomohisa KUZUYAMA*

Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan

Introduction
Terpenoids have been an important resource for biologically active compounds because of their structural diversity (Maimone & Baran, 2007, Sacchettini & Poulter, 1997). Over the past decades, various studies have been performed to identify the biosynthetic mechanism for the terpenoid complexity. The complexity of the terpenoid skeleton is generated by the condensation of C5 isoprene units and subsequent cyclization. Usually, these condensation and cyclization reactions are independently catalyzed by isoprenyl diphosphate synthase (IDS) and cyclase, respectively.

Recently, we have identified and characterized CLDP synthase (CLDS) from a soil bacterium Streptomyces sp. CL190, which produces lavanducyanin, a phenazine with a C5 dimethylallyl diphosphate (DMAPP) and CLDS catalyzes both the condensation of two molecules in the presence of kanamycin (50 μg/ml) at the N- or C- terminal, respectively, were grown in 2 x YT broth for expression of CLDS fused with histidine tag at the N-terminal. pET-CLDS-CH, those are plasmids containing the gene for CLDS and the histidine tag. The expression was induced by adding 0.1 mM IPTG and the culture was continued for additional 12 -14 h. The expression was verified by SDS-PAGE. CLDS-NH and CLDS-CH of over 40 mg were purified.

Materials and Methods

Protein expression and purification
E. coli BL21-CodonPlus(DE3)-RII cells possessing pHIS-CLDS-NH or pET-CLDS-CH, those are plasmids for expression of CLDS fused with histidine tag at the N- or C-terminal, respectively, were grown in 2 x YT broth in the presence of kanamycin (50 μg/ml) and chloramphenicol (30 μg/ml) at 303 K. The gene expression was induced by adding 0.1 mM IPTG and the culture was continued for additional 12 -14 h. The samples were purified with Ni²⁺-resin column chromatography, and Superdex 75 gel filtration column chromatography. The homogeneity of over 95 % of the purified CLDS were verified by SDS-PAGE. CLDS-NH and CLDS-CH of over 40 mg were purified.

Crystallization

Crystallization conditions were screened by the hanging-drop vapour-diffusion method using Crystal Screen (Hampton Research) and the Wizard crystallization screen series (Emerald Bio). The screens were set up using 2 μl drops consisting of 1 μl reservoir solution and 1 μl 10 mg ml⁻¹ CLDS solution with and without 5 mM DMAPP and 2 mM MgSO₄.

Results and Discussion

Crystals of CLDS-NH appeared in a droplet containing 100 mM HEPES–NaOH pH 7.0, 24% PEG 2000 in the presence of 5 mM DMAPP and 2 mM MgSO₄. Crystals of CLDS-CH appeared in a droplet containing 100 mM Tris–HCl pH 7.0, 1 M sodium citrate tribasic, 200 mM sodium chloride. X-ray diffraction data from these CLDS crystals were collected and analyzed. CLDS-NH crystal obtained in the presence of DMAPP belonged to space group P1, with unit-cell parameters a = 46.9 Å, b = 61.7 Å, c = 82.2 Å, α = 74.0°, β = 84.5°, γ = 86.0°. CLDS-CH crystal obtained in the absence of DMAPP belonged to space group P2₁2₁2₁, with unit-cell parameters a = 39.0 Å, b = 87.5 Å, c = 113.6 Å.

We attempted molecular replacement with UPPS from Campylobacter jejuni (26% identity; PDB entry 3ugs; Center for Structural Genomics of Infectious Diseases, unpublished work), UPPS from E. coli (27% identity; PDB entry 1ueh; Chang et al., 2003) and UPPS from Helicobacter pylori (27% identity; PDB entry 2d2r; Kuo et al., 2008) as search models. However, this attempt did not provide a possible solution. Therefore, we are now trying to determine the three-dimensional structure of CLDS by the multiwavelength anomalous diffraction method with a SeMet-substituted protein.

* utkuz@mail.ecc.u-tokyo.ac.jp