希土類三二硫化物 Yb₂S₃の温度圧力相図 II Temperature-pressure phase diagram of lanthanide sesquisulfide Yb₂S₃ II

金澤昌俊^{*}, 池守 慶亮, 西根 康平, 出南 真吾, 李良, 葛谷俊博, 武田圭生, 平井伸治, 関根ちひろ 室蘭工業大学大学院 工学研究科, 〒050-8585 室蘭市水元町 27-1

Masatoshi Kanazawa*, Keisuke Ikemori, Kohei Nishine, Shingo Deminami, Liang Li, Toshihiro Kuzuya, Keiki Takeda, Shinji Hirai, Chihiro Sekine

Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, 050-8585, Japan

1 <u>はじめに</u>

希土類三二硫化物 Ln_2S_3 (Ln = 希土類元素) は合成 時の温度, 圧力条件により,表 1 のような異なる結 晶構造が得られることが報告されている [1]。中で も立方晶系の γ 相 (以下 γ - Ln_2S_3 と表記) は,熱電材 料や光学材料などの機能性材料への応用が期待され ている。

γ-Yb₂S₃ は高温高圧合成でのみ得られ,元素を出 発物質として条件 3.5~6GPa, 1500~1900℃で合成が 報告されている [2]。しかし先行研究において単一 相の合成例は報告されていない。純良な単一相試料 の合成のためには詳細な温度圧力相図の作成が必要 不可欠である。そこで本研究では,出発物質に常圧 で合成した ζ-Yb₂S₃ を用いて,高温高圧下その場観 察実験により温度圧力相図を作成している [3]。本 報告では温度圧力条件の範囲を広げた Yb₂S₃ の温度 圧力相図が得られたため,その結果を報告する。

2 実験

X 線その場観察実験は高エネルギー加速器研究機 構放射光科学実験施設のビームライン AR-NE5C に おいて行った。圧力発生はキュービックアンビルプ レス MAX-80 と 6-6 アンビルセルを組み合わせて行 った。出発物質には常圧で合成したζ-Yb₂S₃ 粉末を 用いた。X 線回折実験には半導体検出器 (SSD) と白 色 X線を用い,エネルギー分散法により行った。

3 結果および考察

図 1 に圧力 2GP の昇温過程における試料 (ζ -Yb₂S₃)のX線回折パターンの変化を示す。室温 では出発物質である ζ -Yb₂S₃のX線回折パターン及 びYbの特性線が見られた (a)。500℃まで昇温させ ると ζ -Yb₂S₃の回折線が消えて、YbS_{1.7}及び希土類 硫酸化物 Yb₂O₂S が見られた (b)。1000℃で δ -Yb₂S₃ が見られ (c)、1320℃では、すべての回折線が消失 し、試料がメルトしたものと考えられる (d)。

図 2 は 5GPa の昇温過程における試料 (ζ -Yb₂S₃)の X 線回折パターンの変化を示したものである。室温 では出発物質である ζ -Yb₂S₃ 及び Yb の特性線を確 認し (a), 500℃で 2GPa と同様に YbS_{1.7} への転移が 見られた (b)。さらに昇温すると 1410℃で γ -Yb₂S₃ のピークが観測された (c)。

図1: (a) 2GPa, 室温における出発物質 (ζ-Yb₂S₃)の X線回折パターン (b) 2GPa, 500℃における X線回折 パターン (c) 2GPa, 1000℃における X線回折パター ン (d) 2GPa, 1320℃における X線回折パターン

図 3 に 5GPa でその場観察実験を行った試料の冷 却後の X 線回折パターンを示す。冷却後の試料には, γ -Yb₂S₃ のほかにも YbS_{1.7} が含まれていた。従って, 5GPa では冷却時に急速に YbS_{1.7} が成長する可能性 が考えられる。5.5GPa におけるその場観察実験でも 同様に冷却時に YbS_{1.7} が生成されたことから, 5GPa 以上の圧力では γ -Yb₂S₃ の単一相を得るのが困難で あることが予想される。

今回得られた結果と前回報告した結果を基に, ζ -Yb₂S₃を出発物質として得られた温度圧力相図を 図4に示す。今回の結果によって, γ -Yb₂S₃の単一相 を合成する条件を特定することができた。

図2: (a) 5GPa, 室温における出発物質 (ζ-Yb₂S₃)の X線回折パターン (b) 5GPa, 500℃における X線回折 パターン (c) 5GPa, 1410℃における X線回折パター ン (数字は γ-Yb₂S₃の面指数)

図3:5GPa, 冷却後の試料の X 線回折パターン (数 字は γ-Yb₂S₃の面指数)

図4: ζ-Yb₂S₃を出発物質とした,Yb₂S₃の温度圧力 相図(図中の記号は表1を参照)

表 1	$: Ln_2S_3$	の結晶構造と空間群	[1]
-----	-------------	-----------	-----

記号	結晶構造	空間群
3	菱面体晶	<i>R</i> -3 <i>C</i>
δ	単斜晶	$P2_1/m$
ζ	斜方晶	Fddd
α	斜方晶	Pnma
γ	立方晶	I-43d

参考文献

- [1] K. -J Range et al., Comments Inorg Chem 3, 171 (1984).
- [2] H. T. Hall et al., Inorg Chem 9, 1084 (1970).
- [3] M. Kanazawa *et al.*, *Photon Factory Activity Report* 2013, #**31**, 164 (2014).
- * 14096006@mmm.muroran-it.ac.jp