植物由来植物由来芳香族ポリケタイド合成酵素のX線結晶構造解析 X-ray crystal structure analysis of aromatic polyketide synthases from plants.

森貴裕,阿部郁朗^{*} 東京大学薬学系研究科,〒113-0033 東京都文京区本郷 7-3-1 Takahiro Mori and Ikuro Abe^{*} Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

1 <u>はじめに</u>

天然物の基本骨格を構築する二次代謝酵素は、活 性部位の微妙な構造の違いで基質特異性や反応様式 が大きく変化するものがあり、これが天然物の分子 多様性を生み出す要因の一つとなっている。こうし た二次代謝酵素の機能を、酵素タンパク質の立体構 造をもとに改変し、基質特異性や反応性を人為的に 拡張して利用する事により、さらなる新規骨格の創 出が期待される。

ポリケタイド化合物とは、植物、微生物等、様々 な生物から単離される、医薬品資源としても重要な 化合物群である。このポリケタイド化合物の基本骨 格構築を行うのがポリケタイド合成酵素(PKSs)で あり、C,のアセチルユニットの伸張反応を触媒する。 Ⅲ型ポリケタイド合成酵素は分子量約 40kDa のホモ ダイマー酵素であり、構造的、機能的にモジュール タイプのI型、サブユニットタイプのII型 PKS とは 大きく異なる。Ⅲ型 PKS は、I 型やⅡ型 PKS に必要 なアシルキャリアプロテイン (ACP) を必要としな い独立型の PKS である。植物においては、植物内 に普遍的に存在している chalcone などのポリフェノ ールの合成に関与するカルコン合成酵素(CHS)が よく研究されている。CHS は、1分子の pcoumaroyl-CoA を受け入れ、3 分子の malonyl-CoA を縮合し、naringenin chalcone を生産する酵素であ る。その他にも様々な芳香族化合物の CoA エステ ルや、脂肪酸の CoA エステルを受け入れるⅢ型 PKS が同定、機能解析が行われている。

糸状菌 Aspergillus oryzae 由来 CsyB は、fatty acyl-CoA、malonyl-CoA、acetoacetyl-CoA から 3-acyl-4hydroxy-6-alkyl- α -pyrone(AcAP)骨格を形成する III 型 PKS である。上述のように一般的な III 型 PKS は 開始基質に、複数回 malonyl-CoA の脱炭酸を伴った 縮合反応を触媒するのに対し、本酵素は、malonyl-CoA の脱炭酸を伴った縮合に加え、acetoacetyl-CoA とアルキルジケタイド中間体の縮合も触媒する。こ のような反応を触媒するIII 型 PKS は初めての例で あり、その詳細な反応メカニズムの解明を目的とし て X 線結晶構造解析に着手した。

2 実験

A. oryzae CsyB 及び変異体の精製と結晶化は参考 文献[1]で報告した方法で行った。X 線回折強度デー タの収集は、Photon Factory の構造生物学ビームラ イン (PF-AR NW12A、PF-17A)を利用した。酵素 の 結 晶 構 造 は 、Neurospora crassa 2oxoalkylresorcylic acid synthase (ORAS)をモデルとし た分子置換法により決定した。

3 結果および考察

A. oryzae CsyB と CoA の複合体構造を 1.7 Å の 分解能で決定した(表 1)。両酵素の全体構造は他 の III 型 PKS と同様な $\alpha\beta\alpha\beta\alpha$ 構造を有しており、活 性中心のアミノ酸残基、Cys、His、Asn の位置もよ く保存されていた(図 2)。

詳細な活性部位の解析の結果、CsyB の活性部位に は、他のⅢ型 PKS において保存されている F375 が Ile に置換され、主鎖の向きが変化したことにより他 のⅢ型 PKS には見られない、深さ約 8 Å の新規疎水 性ポケットが存在していた。この新規ポケットの役 割を検討すべく、変異体実験を行った結果、興味深 いことに、I375W 変異体では完全に活性が消失した のに対し、I375F 変異体においては基質特異性の拡 張が見出された。さらに、両変異体の結晶構造を取 得し、その活性部位を観察したところ、I375W での 新規ポケット消失と I375F での拡大が明らかとなり、 CsyB はこの新規ポケットを利用し2分子のアルキ ル鎖の縮合反応を触媒することが判明した(図3)。 これらの結果を基に、CsyB における AcAP 骨格形 成メカニズムを提唱した。Ⅲ型 PKS において、2 つ目のポケットを利用した触媒反応は初めての例で あり、さらなるⅢ型 PKS の触媒多様性、構造多様 性に興味が持たれる。

図3 CsyBの活性部位構造(A)野生型(B) I375F 変異体(C) I375W 変異体

表1 リファイメントテーブル			
Data collection	CsyB WT	CsyB WT	ACS
Beam line	PF BL17A	PF-AR NW12A	PF-AR NW12A
Wavelength (Å)	0.9800	1.0000	1.0000
Unit cell paramater			
Space group	P2 ₁	$P2_1$	P2 ₁
<i>a,b,c</i> (Å)	70, 104.8, 73.5	69.9, 104.7, 73.0	70.1, 104.5, 73.6
β (°)	114.4	114.3	114.4
Resolution range (Å)	50.00-1.71 (1.81-1.71)	50.00-2.30 (2.44-2.30)	50-2.00 (2.12-2.00)
Completeness	96.3 (95.3)	99.5 (99.1)	99.6 (99.1)
<1/01>	17.3 (5.3)	22.3 (5.5)	13.6 (3.81)
R _{merge} (%)	5.2 (26.3)	5.3 (26.8)	7.7 (35.5)
Redundancy	3.8 (3.9)	3.8 (3.7)	3.8 (3.7)
No. of observed reflections	388,694 (62,153)	161,189 (25,112)	247,674 (38,739)
No. of unique reflections	101,115 (16,084)	42,629 (6,766)	65,058 (10,375)
Refinement			
Resolution (Å)	39.5-1.71	41.2-2.30	41.2-2.00
Overall $R_{\text{work}}(\%)$	17.5	17.3	17.3
Overall $R_{\text{free}}(\%)$	19.9	22.3	20.4
Total atoms	6523	6139	6476
No. of protein atoms	5730	5746	5723
No. of waters	697	393	657
No. of ligand	96	-	96
Average B-factors			
Protein atoms (Å ²)	22.8	32.3	17.5
Waters	32.9	34	26.3
Ligands	34	-	32.1
r.m.s.d. from ideal			
Bond length (Å)	0.007	0.007	0.007
Bond angles (°)	1.15	1.038	1.068

4 <u>まとめ</u>

糸状菌 Aspergillus oryzae 由来 CsyB の X 線結晶構 造解析から、CsyB 特異的な2分子のアルキル鎖の 縮合反応の触媒メカニズムを提唱した。本研究成果 は JBC 誌に掲載された。 参考文献

- [1] Yang, D. et al., Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 70, 730-733 (2014).
- [2] Mori, T. et al., J. Biol. Chem., 290, 5214 (2015).