BL-5A/2014G702 Engineering SS bridge of Thermostable Mutant of *Bacillus* sp. TB-90 Urate Oxidase

Takao Hibi^{1,*}, Yuta Hayashi¹, Takafumi Itoh¹, and Yoshiaki Nishiya² ¹Fukui Prefectural University, Fukui 910-1195, Japan ²Setsunan University, Neyagawa, Osaka 572-8508, Japan

1 Introduction

Urate oxidase from Bacillus sp. TB-90 (BTUO), one of the most thermostable urate oxidases, is secreted as a tetrameric protein of identical subunits.[1, 2] We previously reported that binding of a sulfate anion to the enzyme induced the thermal stabilization, because the bound sulfate formed a salt bridge with two Arg298s in the symmetrical related subunits.[3] To extensively characterize the sulfate-binding site at the subunit interface, site-directed mutagenesis of Arg298 to Cys was done, although the distance between the C β atoms of Arg298s seemed to be too long to introduce an engineering disulfide bond. However, this substitution markedly increased the protein melting temperature of the R298C mutant by ~20°C compared with the wild-type one, and then the thermostabilization was canceled by the reduction with dithiothreitol. Here we show the crystal structure of R298C at 2.05 Å resolution, and demonstrate that the symmetrical related Cys298 residues are linked with each other via a disulfide bridge.

2 Experiment

Crystals of the R298C mutant enzyme were grown by hanging-drop vapour-diffusion technique the as previously described.[3] A protein solution (5 ml) was mixed with an equal volume of reservoir solution containing 16%(w/v) polyethylene glycol 8000, 100 mM Tris-HCl pH 8.0, 0.08 M Li₂SO₄ and 1 mM 9-methyluric acid. The crystal was momentarily soaked in the reservoir solution containing 20% polyethylene glycol 400 and was flash-cooled in a 100 K dry nitrogen stream and then exposed to 1 Å X-ray beam. A native data set was collected to 2.05 Å resolution using an ADSC Quantum 315 CCD camera and synchrotron radiation on beam line BL-5A (Photon Factory, Tsukuba, Japan). Individual frames consisted of a 0.5° oscillation angle measured for 10 sec. Intensity data were processed, merged, and scaled with HKL2000. Data collection statistics are given in Table 1.

Table 1: Data Collection and Refinement Statistics

data collection	
space group	$P2_{1}2_{1}2$
unit cell parameters (Å)	a = 131.86, b = 142.58, c = 70.65
resolution range (Å)	50 - 2.05 (2.09 - 2.05)
total reflections	410,560
no. of unique reflections	83,842
completeness (%)	99.8 (99.9)
$R_{\text{merge}} = \sum_{h} \sum_{i} I_{h,i} - \langle I_{h} \rangle / \Sigma$	$\sum_{h} \sum_{i} I_{h,i} $ 0.121 (0.715)
I/σ	20.3 (3.0)
redundancy	4.9 (4.8)

32.27 - 2.05
0.169 / 0.221
0.007
0.839
98.1%
1.9%

The structure of R298C mutant has been solved by molecular replacement techniques using the program PHENIX. The initial phase was solved using the model 3WLV as a search probe. The MR solution was readily obtained and was rebuilt and refined. After several rounds of refinement, the electron density from the omit map depicted a clear density for disulfide bridges. Statistics for refinement are also given in Table 1.

3 Results and Discussion

The crystal structure of R298C was determined in complex with the competitive inhibitor 9-methy uric acid at 2.05 Å resolution. Superposition of the R298C structure onto that of the wild-type enzyme using GASH revealed a rmsd of 0.28 Å for 1187 C α atoms. Although the differences of overall structures were negligible, the electron densities around residues Pro287-Glu290 were completely lost in the middle of interfce loop II of R298C mutant.

A clear electron density for a left-handed disulfide bridge at the subunit interface was depicted from the σ_A omit map. The disulfide bond formation shortened the distance between the C β atoms of Cys298s to be 4.54 Å, 0.9 Å shorter than that of Arg298s of the wild-type enzyme. Instead, the averaged C β -S γ -S γ angle of 126.4° was abnormally large, and the averaged χ^2 torsion angle (C α -C β -S γ -S γ) was 5.5°, so that a steric hindrance arose between the C α -C β and the S γ -S γ bonds. Further studies on the thermal stabilization is in progress.

Acknowledgement

We thank the staff at the Photon Factory (Tsukuba, Japan) for providing data collection facilities and support.

References

- [1] Yamamoto, K., et al., J. Biochem. 119, 80-84 (1996).
- [2] Nishiya, Y. et al., J. Anal. Bio-Sci. 23, 443-446 (2000).
- [3] Hibi, T. et al. Biochemistry, **53** (24): 3879-3888 (2014).

* hibi@fpu.ac.jp