Atomic-scale Structure of a Pt₄ Cluster on TiO₂(110) Surface Investigated by the PTRF-XAFS Method

Yusaku F. Nishimura¹, Yoshihide Watanabe^{1,*}, Hiromitsu Uehara², Atsushi Beniya¹, Ryo Suzuki¹, Kiyotaka Asakura², and Satoru Takakusagi² ¹Toyota Central R&D Labs., Inc., Aichi 480-1192, Japan ²Hokkaido University, Sapporo, Hokkaido 001-0021, Japan

1 Introduction

Size-selected noble metal clusters are expected to improve catalytic activities and thus to reduce the use of noble metals, especially for automotive catalysts. So far, we have developed size-selected cluster-producing and cluster-characterizing system to clarify the relationships between the number of constitutive metal atoms and chemical properties [1]. Atomic-scale structures of Pt_n clusters on TiO₂(110) surface are, however, still unclear. In this study, we performed polarization-dependent total reflection fluorescence XAFS (PTRF-XAFS) [2] to evaluate the structure of a Pt₄ cluster on TiO₂(110) surface.

2 Experiment

 2×10^{13} cm⁻² of Pt₄ clusters were deposited on a cleaned TiO₂(110) single crystal in the manner described in Refs [1,3]. The Pt₄/TiO₂(110) sample was supplied in vacuum to PTRF-XAFS measurements at BL-9A employing the PTRF-XAFS-dedicated system. Procedures of PTRF-XAFS measurement and analysis are represented in Ref [3]. The goodness of fit between the observed ($\chi_{obs}(k)$) and the calculated ($\chi_{cal}(k)$) EXAFS oscillations, R, was evaluated by using the reduced chi square expressed as follows

$$\mathbf{R} = \sqrt{\frac{1}{N - P - 1} \sum_{30 \le k/nm^{-1} \le 90} \left(\frac{\chi_{cal}(k) - \chi_{obs}(k)}{\sigma_{\overline{\chi_{obs}(k)}}}\right)^2}$$

where *N*, *P*, and $\sigma_{\chi_{obs(k_1)}}$ stand for the number of data points, the number of fitting parameters, and the standard deviation of average $\chi_{obs}(k)$ at $k = k_1$, respectively.

3 Results and Discussion

In our previous STM study [4], Pt₄ clusters deposited on TiO₂(110) surface appeared to have a pseudo-squareshaped planar structure. Preliminary PTRF-XAFS analysis [3] indicated that a Pt_4 cluster on the $TiO_2(110)$ surface might have a regular tetrahedral structure stabilized by Pt-O bonds formed with the O atoms at the $TiO_2(110)$ surface. We compared three expected structures for Pt₄ clusters consistent with STM results, as shown in Fig. 1: (a) a regular tetrahedron (tetrahedron), (b) a square in which a diagonal was parallel to the [001] direction (diamond shape), and (c) a square in which a side was parallel to the [001] direction (square). Here, Pt-Pt bond length in these model structures was fixed to the value estimated by curve fitting analysis (0.2645 nm). Relative position of a Pt₄ cluster to the TiO₂(110) surface was determined as follows. Thousands of Pt₄ positions

against the TiO₂(110) surface were systematically calculated. For each position, FEFF calculations were performed to evaluate the values of R. Finally, the models with minimum R values were selected the as most appropriate models for the above three structures, as depicted in Fig. 2.

The R values for three structures in Fig. 2 are listed in Table 1. Based on the R values, a regular tetrahedral structure is considered to be the most likely structure for Pt₄ clusters on the whole. It would be possible that a regular tetrahedron (Fig. 1a) looks like a pseudo-square in the 2D view from the direction as shown in Fig. 1b.

Fig. 1: Model structures of $Pt_4/TiO_2(110)$.

Fig. 2: 2D views of a regular tetrahedron.

Further investigation and analysis will be required to obtain compatible structure model with the STM results.

Table 1: R values for EXAFS oscillation fits.

Structure	<i>E //</i> [001]	<i>E //</i> [110]	<i>E //</i> [110]
(a) Tetrahedron	0.97	0.93	0.95
(b) Diamond shape	1.11	0.96	1.23
(c) Square	1.15	1.41	1.29

Acknowledgement

Part of this study was financially supported by Grantin-Aid for Scientific Research on Innovative Areas "Nano Informatics" (grant number 25106010) from JSPS.

References

- Y. Watanabe and N. Isomura, J. Vac. Sci. Technol. A 27, 1153 (2009).
- [2] K. Asakura, S. Takakusagi, H. Ariga, W.-J. Chun, S. Suzuki, Y. Koike, H. Uehara, K. Miyazaki, and Y. Iwasawa, *Faraday Discuss.* 162, 165 (2013).
- [3] Y. F. Nishimura *et al.*, *Photon Factory Activity Report* 2013 B, 329 (2014).
- [4] N. Isomura, X. Wu, and Y. Watanabe, J. Chem. Phys. 131, 164707 (2009).

* ywatanabe@mosk.tytlabs.co.jp