Electronic Structure Study of nano-particle Anatase (TiO$_2$) by means of X-ray Raman Scattering

Yasuhisa Tezuka1, Sekiya Nakamoto1, Yuto Yokouchi1, Masaya Mikami1, Shunsuke Nozawa2, Toshiaki Iwazumi3, Yoichi Ishiwata4,

1Grad. Sch. of Sci. and Tech., Hirosaki Univ., Hirosaki, Aomori, 036-8224, Japan
2Photon Factory, Inst. of Mats. Struct. Sci., Tsukuba, Ibaraki, 305-0801, Japan
3Grad. Sch. of Eng., Osaka Pref. Univ., Sakai, Osaka, 599-8531, Japan
4Grad. Sch. of Sci. and Tech., Saga Univ., Saga, Saga, 840-8502, Japan

1 Introduction
Anatase titanium-dioxide (TiO$_2$) exhibits larger photocatalytic activity than other polymorphs; rutile and brookite. The electronic structure should be investigated to make clear the nature of TiO$_2$. We have reported X-ray Raman scattering (XRS) of several Ti-oxides [1] and anatase [2] excited around Ti K absorption edge. In this study, we investigated electronic structure of nano-particle anatase and its doping-effect with Co$^{2+}$.

2 Experiment
Nano-particle anatase was made by thermal decomposition method. The structure and particle size (~5nm) were confirmed by X-ray diffraction and transmission electron microscope methods, respectively. XRS spectra were observed using X-ray emission spectrometer (ESCARGOT) at beamline BL-7C. Scattered photon was analyzed using Ge(400) and detected by one-dimensional multi-channel proportional counter. The energy resolution of XRS measurements was about 1eV for 5keV photon. In this experiment, XRS spectra were excited at 4963.0 eV that is just below Ti K absorption edge where Ti 3d state was observed via quadrupole transition [1].

3 Results and Discussion
Figure 1 shows XRS spectra of two kinds of anatase which have different particle-sizes. The XRS spectra are plotted against energy-loss from excitation (Raman shift). These samples were made in different growth time; longer growth-time results larger particle-size. We have reported that four peaks on the right correspond to the excitation of Ti 2p^3d, while three peaks on the left correspond to the excitation of Ti 2p^4p, where underline denote core-hole [1]. The Ti 2p^3d peaks are split by ligand-field and spin-orbit interaction as shown in the figure. The figure shows the whole 3d peaks become weak in larger sample, while 4p peaks does not change. Since the XRS spectra reflect unoccupied 3d state, the intensity change suggests increase of 3d-electron numbers. Usually, crystal of TiO$_2$ has rutile structure at RT and anatase undergoes a transition to rutile phase when annealed at high temperature, while nano-particle TiO$_2$ has anatase structure. The fact means that bond strength become tighter with increasing particle size. The result in this study suggests increasing of hybridization between Ti and O with increasing particle-size.

References
* tezuka@hirosaki-u.ac.jp